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Specifications

1 Introduction

This paper proposes a secure hash algorithm CRUNCH. Thositn is an iterative one-way hash function
that can process a message to produce a condensed refresaratled amessage digesthis algorithm
enables the determination of the message’s integrity: &ayge in the message will, with a very high
probability, result in a different message digest. Thigprty is useful in the generation and verification of
digital signature and message authentication codes, argktheration of random numbers (bits).

The algorithm enables to obtain digests of 224, 256, 384 4A@dbfis. First an encryption permutation
based on an unbalanced Feistel scheme with expandingduosatiill be designed. This permutation will
be a pseudorandom permutation frém bits to kn bits using random expanding functions fronbits to
(k — 1)n bits. Then a compression function is constructed by xofivgguch permutations and choosing a
number of bits depending on the desired length of the mestiggst.

The hash algorithm can be described in four stages: pregsingg encryption permutation, compres-
sion function and hash computations. Preprocessing iagghadding the message, setting an initialization
vector and an initial value. The hash computation uses Z/ption permutations, the compression function
together with the Merkle-Damgard construction.

Key words: Hash Functions, Unbalanced Feistel Schemes, Expandingtiéus, Cryptography with
Random S-Boxes.

2 Definitions

2.1 Glossary terms

Bit A binary digit having a value 0 or 1
Byte A group of eight bits
Word A group of either 32 bits (4 bytes) or 64 bits (8 bytes)

2.2 Algorithm parameters, symbols and terms
2.2.1 Parameters

The following parameters are used in the secure hash digospecifications on this standard.

M Message to be hashed.
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Length of the messag¥ in bits.

Number of zeros appended to a message during the padding step
The padded message.

Numbers of bits in a message block/f. m = 1024 — 3.

it" block of M, of sizem.

The initial value for the compression function aftesteps for the compression function.

1y is the input value for the compression function.
Theit" 8-bit block of I;.

Theit" hash value H™) is thefinal hash value
and is used to determine the message digest.

The number of bits of the message digest.

An unbalanced Feistel scheme with expanding functionsrofinds applied on
ak-block input.

Encryption permutations used to gefdit message digest.
Gp, G5 are unbalanced Feistel schemes with expanding functions.

The number of rounds of an unbalanced Feistel scheme neededl t
encryption permutations when the message digesf Huis.

Internal functions fron® bits to 1024 bits used in the unbalanced Feistel scheme
with expanding functions to gé&ig.

Internal functions fron® bits to 1024 bits used in the unbalanced Feistel scheme
with expanding functions to g(ﬂ”ﬁ.

The compression function.
32 bit word equal to the first2 decimals o x [sin(t + 29)|.

Block obtained by choosing thie— i + 1 bits from thei-th leftmost bit to thej-th
leftmost bit of X whereX € {0,1}!0%4, If j < i then this block is void.



2.2.2 Symbols

The following symbols are used in the secure hash algorithpesifications, and each operatesuotbit
words.

@ Bitwise OR (“exclusive-OR”) operation.
I Concatenation of blocks.

| ] Floor function.

3 Notations and conventions
The following terminology related to bit strings and integevill be used.

1. A hex digitis an element of the s€0,1,...,9,a,..., f}. A hex digit is the representation of a
4-bit string. For example, the hex digit “7” represents theitdstring “0111”, and the hex digit “a”
represents the 4-bit string “1010”.

2. A wordis aw-bit string that may be represented as a sequence of heg.digitonvert a word to hex
digits, each 4-bit string is converted to his hex digit egiéwt, as described in 1. above. For example,
the 32-bit string

1010 0001 0000 0011 1111 1110 0010 0011

can be expressed as “al03fe23”, and the 64-bit digit
1010 0001 0000 0011 1111 1110 0010 0011

0011 0010 1110 1111 0011 00OO 0001 1010

can be expressed as “al103fe2332ef301a”.

Throughout this specification, the “big-endian” conventig used when expressing both 32- and
64 bit words, so that within each word, the most significahtdxtored in the left-most position

4 Constants

This section details on the generation of constants needibeé CRUNCH algorithm. There are exaclly
16 x 256 x 32+ 28 = 262172 constants 082 bits. This representsMB. Fort € {—28; —27;...;262143}
let K; be the32 bit word equal to the firsB2 decimals of8 x [sin(t + 29)|. In other words,K; are the
decimals fromt to 35 of |sin(¢ + 29)|.

Here are the firsk8 constants:
K_28 = bb5523c2, K_27 = 463dbab4, K_Qﬁ = 210386db, K_25 = 0d€€7777,
K o4 = abe07d78, K_93 = 3¢3e3156, K_99 = 41823090, K_51 = ea34a80a,
K_Q() = 40046661, K_lg = 5a27bd7c, K_18 = fffaddSb, K_17 = 4ae6bdf5,
K 16 = 5c¢808910, K_15 = ecc38c9f, K_14 = 33calc73, K_13 = 4da0410b,
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Message digest (bits) IV (in hex)
224 bb5523c2463dbab4210386db0dee7777abe07d783c3e3 236918
256 bb5523c2463dbab4210386db0dee7777abe07d783c3e3P23608b&a34a80a
384 bb5523c2463dbab4210386db0dee7777abe07d783c3e3P23608b&a34a80a
4c04c6el5a27bd7cfffadd8b4aebbdfs
512 bb5523c2463dbab4210386db0dee7777abe07d783c3e3P308b&a34a80a
4c04c6cl15a27bd7cfffadd8b4ae6bdf55¢c808910ecc38c@18384da0410b

Figure 1: IV Values

K_ 15 =00f12010, K_17 = 02059a04, K _19 = 32f2d28f, K_g9 = 4db63d57,
K_ogg = b17882ec, K_g7 = 1220a29f, K_og = ¢b0f3409, K_g5 = 3e9fdedb,
K_ 94 =0f0e6f31, K_g3 = 19b83eb0, K_g2 = a6a86¢39, K_y1 = 2ad0a768.

These constants have been chosen because it is quite eaalgutate them, and because it is very
difficult to establish relationships between them. So weaarsider these constants as random numbers.
We will see later that it is very easy to change the algoritlonthait these constants are not stored explic-
itly in memory (because it's clear putting a required1oMB of memory on some device can not easily
be achieved). We will see that these constants can be codhputehe fly. This might slow down the
computation.

5 Preprocessing

Preprocessing shall take place before the hash computagigims. This preprocessing consists of three
steps: padding the message, M, (Section 5), parsing theedaddssage into message blocks (Section 5.2)
and setting the initialization vector 1V to compute the imliinput of the compression functiofi (Sec-

tion 5.3). We defindV = K _ag||...|[K_,q. 5 ;.
32

5.1 Padding the message

The messagé@/ shall be padded before hash computation begins. The pugbdisis padding is to ensure
that, in the padded message, the number of bits is a multfdl®24 3 = m. Append the bit “1” to the
end of the message followed Ipyzeroes and the binary representation of the lengththe messagek is
chosen so that the total number of bits is a multiplerofThe padded message is denoted\y N is the
number of blocks of sizex of M.

5.2 Parsing the message

M is parsed intaV m-bit blocks.

5.3 Setting the initialization vector and computing initial value

An initialization vectorIV of size ¢ is defined (see Figure 1) and the initial value for the congioes
function is obtained by concatenatiddy and the leftmost m bits of the padded message (the first bibck o



M). This is given by )
Io=1V||M©,

Iy is of size 1024.

6 Encryption Permutations

6.1 Unbalanced Feistel Schemes with Expanding Functions

An unbalanced Feistel scheme with expanding functionslesab construct a pseudorandom permutation
from kn bits to kn bits by using random functions from bits to (¢ — 1)n bits. The first round of an
unbalanced Feistel scheme with expanding functions isnging=igure 2. Ifd rounds are applied, the
scheme is denotef?.

IO Il 12 1127
D
—90 P
D
9 Y,
|| 126 /\
90 N
Mogh(l) Peg(')  I'eg®I) I

Figure 2: First round of an unbalanced Feistel scheme wiplamaing functions, fok = 128

When the internal functions are secret, generic attackbesetschemes have been studied in [9]. When
k+ 2 < d < 2k, the best generic chosen plaintext attacks g~ messages. For example, when
k=128 andn = 8,d = w + 129. Here the functiong; are public and are not completely random
(as explained in Section 6.2) since there are constraifdtedeto memory space. Obviously, the security
bounds are not the same when the internal functions arecpubli

For symmetric Feistel schemes, the following study is givef]. It refers to the model of indiffer-
entiability for hash functions (see [6] and [3]). Two systeare described. In the first system, the random
oraclesg; (inner functions) are randomly chosen and a permutatioedas a symmetric Feistel scheme
is constructed. In the second system, a permutatiaa randomly chosen and the inner functigpsare
simulated by a simulator with oracle accessAo It is shown in [4] that, with 5 rounds, 4 messages are
enough to distinguish both systems. This contrasts witlckhssical Luby-Rackoff result where 4 rounds



Message digest Security | Unbalanced Feistel schen#&?® | Encryption Permutatior|
(bits) (bits) (Number of rounds) (Number of rounds)
224 112 143 224
256 128 145 256
384 192 153 384
512 256 161 512

Figure 3: Secure Hash Algorithm Properties.

are enough to obtain a strong pseudo-random permutationgseudo-random functions. However, with 6
rounds the distinguisher is not able to tell which systensisou

The encryption permutations of CRUNCH are based on unbathReistel schemes with internal public
expanding functions. The number of rounds will depend orighgth of the message digest. Two facts are
taken into account. Firstly, the security bound for chosamfext attacks of [9] are given when the inner
functions are secret. This number of rounds is increasetbriséy, it is more secure to choose a number of
rounds to make sure that all the Bytes are used the same nwinfrees. Thus, we choose for the number
of rounds a multiple of 128. Ifs is the length of the message digest, the number of rounds is 3.
Figure 6.1 shows the number of rounds needed to reach thetgdmound in the case of an unbalanced
Feistel scheme and the number of rounds chosen for the dimerygermutations depending on the length
of the message digest.

Using Unbalanced Feistel schemes with expanding funcéaables to construct two encryption permu-
tations, which depend of € {224, 256, 384,512} and are denoted b§ 3 andG/’g. They are permutations

from ({0, 1}8)"*® = {0,1}1024 to {0, 1}1024,

6.2 Internal Functions, Random S-Boxes

To generate the encryption permutati@ig andG/’g based on Unbalanced Feistel Schemes let us construct
the internal functiong; andg;, which will stand for random S-Boxes.

There are2d internal functions to define, whetkis the number of rounds. Each function mapisits
onto 1016 bits. For0 < j < d — 1, g; represents the internal function of the first permutatiasml@ the
internal function of the second permutation. The figfunctions of each permutation will be completely
independent, since they do not use the same congkar(see Section 4).

Let j be an integer betweahandd — 1, and: an integer betweefi and255. We want to define the
1016 bits word ofg; (i), and also the 016 bit word equal tay; (7).

Letj = j mod128, andg = | |. We define:
a(j,i) = (2¢ + 1)i mod256

And then

~v(j,i) = (j mod16) x 256 x 32 + 32 x a(j, i) — 4 x Lli6j

And:
v (4, 1) = (i, 5) + 16 x 256 x 32



Now, for v integer betweenr-28 and131040 included, letZ,, be the1024 bit word equal to:
Zy = Ky |[Kyia| [ Kypn

Finally:
95(1) = (Zy(j1)) 8j+8)...10231 [ (Z+(i,0))o...85-1)
and
9;(’5) = (Z'y’(j,i))(8j+8)...1023|‘(Z'y/(j,i))o...(@—l)
The definition ofg; (i) uses consecutive predefined constants, ang fer16, g;(i) is equal to a con-
catenation of bits frong; mqq (v (s, 7)) and fromg, moq6((s, i) — 1)

7 The Compression Function

G and Gb are the two encryption permutations obtained in the prevgection. Then the compression
functionCj is defined by
Ca(I) = (Gs(I) & Gp(1))g. (5-1)
For example, if3 = 224, Cao4(1) will take the 224 leftmost bits ofr5 (1) © G(1).
Taking the Xor of two secret permutations increases therggquroperties. It is shown in [7] and [8],
that for the Xor of two secret permutations frambits to L bits the security bound for the number of
messages i8".

8 Secure Hash Algorithm

The CRUNCH algorithm is described in this section. Boe {224, 256,384,512} the final result will be
a 3-bit digest of the messagé/ is the message to be hashéd.is the padded message which contaks
m-bits blocks.IV is the initialization vector. The compression functi@p is used. The algorithm proceeds
as follows (see also Figure 4):

HY = Cy(Iy)
Fort=1toN —1
I, = H(i)HM(i)
HOH = Cy(L)
EndFor

HW) is the message digest.
The mode of operation of this hash algorithm is shown below:

CHAINING MODE

MY—@——P——P—

1\
1\
(A
1\

d d d 90



M®

M®

M®

MW-1

Io
1Y M©
HW = Cy(1y) MO
In-1
F(N-1) MN-1)

Figure 4: CRUNCH hash algorithm
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9 Example

MessageVl = abede f gh, of length equals td8 bits.
We show below the first values éfand values of the internal functions.

Round number 0:
Iy

®
g0 (0Xbb = 187)

I, =1Io
@
90(187)

Round number 1:
I

®
91(0x46 = 70)

®
¢, (0x80 = 128)

Faot
bb5523¢2463dbab4210386db0deeT7777abe07d783¢c3e31564182309bea34a80a
6162636465666768300000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000040

.13 £8c062009d384d48893331€92¢6802b6 f 5a3b0aT72¢464c9ee fc234962ca3
ec9ebeb25b8cb3184bc96d1 f f f fbf 525946443 74c fI8b6T7eabbaec2740b79752
3d402551ac2ca2 f80d3ecc40220d807546ad796ebac3eab7010cac68bbe63 f24
45cddbeel f f988470e9e0800ab94362b3b3¢3381424cb2bbealdT fOd4b0 f f394
ForG":
bb5523¢2463dbabd210386db0deeT777abe07d783c3e31564182309beald4a80a
6162636465666768300000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000040

..d52d5d17bb7 f0b92ab f 3dc f41603ce0593a73286€7c464c0a02b87dIb0LTd2
6e36 f0ee656c6ada8 fd3dadade31b07bed530 f f72457d238d364376 f 3 f 99687
9443abal fObe f c6cTb7ababadd59ddab042881e69a f40a f2 fe23 fe22081d9cbe
a2d4e666 f5 fa04d8 f 76a51d8981452bec505c¢680cd447 f0e80091bd 76421854

Fatr
46db02 f436278c6c4b0 fe83c075b1 fa95688db8c991d100d1cdf 59dea284a98d
fedd363eeadd70chbc96d1f f f fbfc52594644374cfI8b6Teadbae27406797523d
402551ac2ca2 f80d3eccd0220d807546ad796ebac3eab7010cac68bbe63 f2445
cddbeel f f9884709e0800ab9436263b3¢3381424¢b2bbea0dT f0d4b0 f f 3d4bb

..a015¢f80583a fab839eac f77370bc79df cacd07143 f8aall f82db17d6aT07e
805ab467a6cb2e92a fb5 f c06295876046a4d8d8 f0d9I77e69d4dT78b7d3943cTad
ede9bbaca3dda9 fcfa8ad03c4335824d25 f cdacfal226b5¢cc4c1168df66 flecfb
9¢60e1c0eee520d896558bd43 f77939d365958¢3308ebd84c51b4abch9cl2ddc
ForG”:

800e9 518650 fb3a67507 f9f574b9ae73dadabad9 f53281221b1¢33841 fd80 f
54938a000a0db20 f d3dadade31b07bed530 f f72457d238d364376 f 3 fe9968794
43abal fObe f c6¢TbTababadd59ddab042881e69a f40a f2 fe23 fe22081d9cbca2
d4e666 5 fa04d8 f76a51d8981452becb05c680cd447 f0e80091bd76¢421814bb

..d131eb2 f92e83c5d4aa942¢8280dadccTc1e0978279927¢1e8ba4910 f 43067
ad46 f f06d03 f50b f011e7943653a5 f1a4453581260630 f a9eeeeda35b29b8846
a34690e933 f f6d45ce58185 fddbbc2 f f f03€954525469062ae20b feda f2db92e
9524075425d050b2ce54e8 f d83aacl39aceeda507b6303adbab56618 f0cIdf 52
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Round number 255: FdaFr
Irss 5e483df fcd0874aT fOf73f fecdb29e f61421397¢712deab f4806 f37130e79a56
2d18938edab67a836366d8d5b40d38a3a f22d8cc f972983¢153454c27b7eabe9
0bab2 f788bdf 69dd8d359b1187e¢626006b f6367148b705a7d091d52256b f93¢2
4¢d7119 fb0ba7c2561bbb f18d8a46 f7¢262d8a72b60 f7¢7852d21051a f64a710

@

9255(0%x5€) 00ed47461030e8c0e45140c543b1 fb2074 f f848713360192504 f4131baa f648d
5b15ea6d6 f c71334bc3d03abc30b4d02611c2a f7c9ab8c3cec272ad6c951 f42e
6ce6e6a38 f380093126¢Ta f579 f fc4041d385840be70571627e fad f74823106a
7362947d8cb6dc1768 f37665 7489960 f a568c5924a55e6665280a93c6d0a338
ForG’

Isss 58a17b94a9b9eab01df 56belbTcl feaadld1068d5937358 f431908eb f9ddb854
T2e feb6bd29d720b1e718b338 fb28e45c3663 f6 f503ddd49033a6a870a1146053
0e88bd1 fb78b08a34adaced51584a0c0157e852938646670d413bab5044ae8298
a27 f9cabde29b3b34 f57584dc38063ae00e1daa6173101909b2¢cal7a9499717

S

Ghs5(0X58) 0063da77d68354 f d216d947c9683862 f 3ccadld37 fc5ddab239b7049d8 f4alee

2f f65317a8ab fe8ael050bc845 f df c76b89ddb285400ddf 719dcb286937e1021
07ed4c9855931 fd8464220a7 f dc f dba34a22bd65c0e62022a351be59¢38dcb06
3866644477157 f82d743eTadclT fdf a08a46500402¢ f487e f47¢c185a95d33a

Finally the hash value of "abcdefgh”:
676b5a0202222a283e80a6a6411d588dcH6aa544e9b3d978cbcae2ab61e6612b

We can notice that7 = 48 ® ed ® al & 63

Part Il
Computational efficiency

10 Memory Size/Speed

All of the constants to be stored (namely the S boxes) reguoendl M B of storage. It is small enough to
fitin the L2 (L3) caches of most of the recent general purposeaprocessors (x86 for example). Fitting
the S boxes in the L1 caches might be much more difficult dubdovery limited size of the L1 Dcache
(typically 32 KB). However, experimentally we have checkleat fitting in L1 cache will only give marginal
performance improvement due to the good bandwidth of L2eselnd efficient prefetch mechanisms from
L2 to L1. At the other end of the spectrum (on smart cards), 1dfiorage requirements might be hard to
accomodate within the current generation but we first beltbat there will be a general trend to improve
storage capacity and second we describe a mechanism to topthe fly the S boxes allowing to reduce
the storage requirements.

12



One excellent feature of CRUNCH is that besides data acceadifg values from S boxes), the com-
putational structure is remarkably simple: a loop aroundRX@perations (which is one of the simplest
operations to perform, much simpler and efficient than anadal shift operation). There is no complex
control structure (which could lead to branch mispredigtidn fact the key performance limiting factor of
CRUNCH is data access.

11 Implementation

For the implementation, it is far better to avoid shiftingalhetween each round of the permutations: this
can be simply done by a clever adressing. Except mayltelitiprocessors, because data is already divided
into 8 bit-blocks, so it might be easier to shift them.

12 64-bit processors

Machine 1:

Processor: Intel Core 2 Duo E6400 @2.13GHz (cache L1 dat®32#che L2 2MB)
RAM: 4GB DDR2 dual channel

OS: kubuntu 8.04.1 64bits with KDE 3.5

compiler: icc v10.1

compilation options: -fast

Message digest Message Size Number of cycles| Speed
(bits) (MB) (MB/s)
256 100 16,95 * 109 12,59
384 100 29,62 * 10” 7,24
512 100 46,97 * 10° 4,55

13 32-bit processors

Machine 1:

Processor: Intel Core 2 Duo E6400 @2.13GHz (cache L1 dat®32#che L2 2MB)
RAM: 4GB DDR2 dual channel

OS: kubuntu 8.04.1 64bits with KDE 3.5

compiler: icc v10.1

compilation options: -O3 -march=pentium4

Message digest Message Size Number of cycles| Speed
(bits) (MB) (MB/s)
224 100 25,16 * 10” 8,48
256 100 29, 87 * 10” 7,15
384 100 52,36 * 10° 4,08
512 100 86,42 * 10° 2,47

13



Machine 2:

Processor: Intel Core Duo T2300e @1.66GHz (cache L1 dat&3@&che L2 1MB)
RAM: 1GB DDR2 dual channel

OS: kubuntu 8.04.1 32bits with KDE 3.5

compiler: icc v10.1

compilation options: -O3 -march=pentium4

Message digest Message Size Number of cycles| Speed
(bits) (MB) (MB/s)
224 100 29,26 * 10° 5,68
256 100 34,23 « 107 4,88
384 100 60, 55 * 10° 2,74
512 100 100, 38 * 10” 1,66

14 8-bit processors

The following estimate has been obtain on an 8-bit simulatarsmart-card, using the compiler IAR / AVR.
(AVR is the standard 8 bits atmel)

Message digest Message Size Number of cycles| Speed
(bits) (bits) (KB/s)
224 800 535585 3,82
256 768 612097 3,21

Part Il
Known Answer Tests and Monte Carlo Tests

We reproduce here some results of CRUNCH with a digest sizal @q256 bits. For the complete results,
see the appropriate file.

Len = 5

Msg = 48

MD = 7EEOFE99FE6636C2A895D6AB19253A0F5657B864CBD34FB334334722E6C2CB58
Len = 6

Msg = 50

MD = BF6CDBB2572C73612A5E9EB39BD431D57D26F8795E4F77F8AFF5492F2947CC2C
Len = 7

Msg = 98

MD = 6E7367AAACD265BOA0ELIES860413516716AD3027C98194F5149695F5521F55BC
Len = 8

Msg = CC

14



CRUNCH-224 < 264 1024 32 224 112
CRUNCH-256 < 2064 1024 32 or 64 256 128
CRUNCH-384 < 2128 1024 64 384 192
CRUNCH-512 < 2128 1024 64 512 256

2In this context, “security” refers to the fact that a birtlidattack [HAC] on a message of sizeproduces a collision with a
factor of approximately™ 2.

Figure 5: Secure Hash Algorithm Properties.

MD = A819196D71E8CDFABEA307A61A59302DD3FB71FCEOEOD84BOBF656E8FA36D180

Repeat = 16777216
Text = abcdef ghbcdef ghi cdef ghi j def ghi j kef ghi j kIl f ghi j kl nghi j kI mhi j kl o
MD = 6521EDFAD4166903A03239D021DFC77CA5CBB44D4AA45D90CDD336B91CF17C82

Part IV
Expected Strength

The expected strength of the CRUNCH algorithm is summaiiizédgure 5.

Part V
Analysis of Known Attacks

15 Background

The designh of CRUNCH is based on the XOR of two (fixed) pernitat

The idea of using a block cipher goes back to Preneel, Gavaad Vandewalle [10] and further ana-
lyzed by Black, Rogaway and Shrimpton [2] who proved that agn®@4 possible constructions, 20 of them
are collision-resistant up to the birthday bound in the klaox model.

However, in all these constructions, the key is changedyeeeind, which is usually a serious drawback
as concerns efficiency. Hence the idea of building a hashitmwith block ciphers whose keys are fixed.

The possibility of designing a secure hash function whoskertying compression function uses exactly
one call to a (fixed key) block cipher was studied by Black, I@ano and Shrimpton [1]. They essentially
proved that such a construction cannot reagiavenlevel of security, by exhibiting a collision attack with
O(n) oracle accesses to the block cipher (modelized as an iq#a i Even if this attack is not practical
(it requires building a tree witf2(2") nodes, where: is the bit size of the blocks), it shows that it is not
possible to obtain a proof of security against adversarids umlimited computational abilities.

As an example, we could consider a variant where, insteadah{ two permutation, the compression
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function with one encryption permutatid@rg is defined by

Co(I) = (Ga(I) D I)._ (1)

The obtained scheme will be approximately twice faster tBRWUNCH, but cannot be proven secure.
As a consequence, hash functions using with a compressietida using two calls to (fixed key) block
ciphers are worth considering.

16 Collision attacks

Rogaway and Steinberger [12] investigated the case of hasttibns whose compression function uses
two calls to fixed key block ciphers. They describe a gendtach for collision finding, which gives an
upper bound for the security. More precisely, the best knattack require€)(2"/2) oracle accesses to the
permutations and a time complexi@(n.Qn/ 2). This means that — for the best constructions based on 2
permutations — one cannot have a security, against coiisioetter thai©(2"/2). Note also that [5] gives
an attack in0(23"/%) oracle accesses and time complexit23"/%).

For CRUNCH#, we haven = 1024, and the best known attack is the birthday attack, whose =ity
is in O(2°/2).

Moreover, for similar constructions (see [5]), Fouqueyistnd Zimmer proved that finding a collision
on the compression function (and thus for the whole hashiumcrequires2(2™/*) oracle accesses to the
permutations.

17 Preimage attacks

In [12], Rogaway and Steinberger also investigated preeattacks for hash functions based on a com-
pression function using two calls to (fixed key) block cigheFhey describe a generic attack for preimage,
which gives an upper bound for the security. More precigblybest known attack requiréza(Q”/ 2) oracle
accesses to the permutations (and a time complexi*). This means that — for the best constructions
based on 2 permutations — one cannot have a security, agegitsiage, better tha@(2”/ 2). Note also that
[5] gives an attack i)(23"/*) oracle accesses, time complexiyfn.2>"/*) and space (23"/4).

For CRUNCHS#, we haven = 1024, and the best known attack has a complegt2”?).

Moreover, for similar constructions (see [5]), Fouqueistnd Zimmer proved that finding a preimage
for hash function require®(2"/?) oracle accesses to the permutations.

It should be noted that we carefully studied preimage astémkmany variants of CRUNCH. In partic-
ular, some variants lead to very efficient hash functionsubéortunately are trivially broken. For instance
if, instead of Xoring permutation, only one encryption petationG s is considered and if the compression
function is defined by dividing3(/) into two parts and then Xoring them, the following attack|vai
possible. Given a digedt, it is possible to obtai so thatCz(/) = H. Since the internal function are
public, it is enough to go backward from the elem&itS & H| € {0,1}1924 whereS is any element of
{O, 1}512'
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Part VI
Advantage and limitations

18 Parallelization

Our algorithm can greatly benefit from the new coming muhgocarganization which is becoming a de facto
standard on most of the general purpose microprocessors.

First of all, the way the message is compressed can be ehsihged: for example, the message can be
compressed level by level, as shown on the figure below (dattl ) :

j(a\\
SIS IS IS IS IS I8 I8 I8 I8 I8 I8 I8 I8 18 I8 )

This is a real advantage when the message to be hashed i®rgrylhe computational time becomes then
proportional to the logarithm of the size of the message.

Second, the two permutation functions can be evaluatedrallph since their computations are inde-
pendent. This gives an extra performance gai. of

19 Vectorization

Our CRUNCH algorithms lends itself very well to “vectorimat™ 128 bits long XOR operations can
be easily used for performing the operations of the innetrtazg. Such operations are available on a
large number of modern general puropose microprocess&s, (Sltivec etc.). Future extensions of these
instruction to 256 or 512 bit long operations can also bdyeased by our algorithm. Tests performed using
a state of the art compiler such as ICC (Intel C Compiler) V&é shown that the innermost loop can be
easily fully vectorized and optimized using the full setegisters available (without having to hand code in
assembly language to get peak performance).

20 8-bit processors

We can easily implement the algorithm in a 8-bit processarhimee, for there are no complicated operation.
The figurel show that it works well in a 8-bit environment. Nevertheldsre is a difficulty to store all the
S-boxes { MB). Such a difficulty could be avoided if we implement a ételgorithm to generate only the
values of the S-boxes that we need (on the fly). There, we ne&y ¢o generate efficiently and exactly the
35 first decimals of the sinus of an integer betwéeand262173. Of course, we can imagine other ways to
generate these boxes. For example, as the AES is often imaptethon smart cards, we could replace the
S-boxes by a random number generated by the AES. For thisgeirphel 28 bits of AE'S(i) could be used

to generatel constants. This surely will slow the process, although défés a way to increase the security
as1024 different S-Boxes instead of onB2 can be generated in the same way .
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21 Other Digest Size

Any other size of digest message smaller than bits. If we want a digest size bigger thah2 then we
have to change the size of the message block, which has tddmesatwice the digest size. For security, we
recommend a number of rounds equal to the maximum betweatigést size and24.

Part VII
Variants

There are several possible variants for the CRUNCH hasti@umc

22 Variants on the S-Boxes

e To implement the CRUNCH hash function on smart cards, the BIE&K cipher (instead of the sine
function) can be chosen to generate the constants needget fimternal functions.

e Another variant is to have true random internal functions.

e In order to construct the encryption permutation, it is giegsible to have 32 instead of 16 internal
functions. This choice of 16 functions is due to the L2 caclesmory.

23 Variants on the design

A variant is to consider only one encryption permutati®mnd to computéz(1) ¢ I instead of taking the
Xor of two permutations as explained in Part V. However we doracommend this variant.

24 Variants on the encryption permutations

In the design of the encryption permutations, it is also ftsgo choose other group laws (e.g. addition
modulo2'°?%) and to have different laws for each encryption permutation

25 Variants on the Merkle-Damgard construction

As explained in Section 9, the CRUNCH algorithm is paratkile.

26 The Future

With more memory space, instead of having internal funstioom 8 bits to 1024 bits, it could be possible to
choose internal function from 16 bits to 1024 bits with anlagaus structure (unbalanced Feistel schemes
with expanding functions).
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Part VIII
Conclusion

The proposed hash algorithm (CRUNCH) has an extremely sirsiplicture: basically the innermost loop
amounts to accessing S-boxes and XORing the data accessesiimplicity is key to our design because
it allows simple and efficient implementation on almost anigroprocessor, it simplifies its protection
and finally it makes easier to establish a direct relationvbeh CRUNCH security and a generic (well
known) security problem. The simplicity of its computatbistructure is compensated by the requirement
of accessing (and storing) S-boxes whose total size is drtdMB. This storage requirement can be lifted
by computing on the fly the S-boxes. Although it increasestimputational requirements, it does not alter
any properties on the security of CRUNCH.
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