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Part I

Specifications

1 Introduction

This paper proposes a secure hash algorithm CRUNCH. This algorithm is an iterative one-way hash function
that can process a message to produce a condensed representation called amessage digest. This algorithm
enables the determination of the message’s integrity: any change in the message will, with a very high
probability, result in a different message digest. This property is useful in the generation and verification of
digital signature and message authentication codes, and the generation of random numbers (bits).

The algorithm enables to obtain digests of 224, 256, 384 and 512 bits. First an encryption permutation
based on an unbalanced Feistel scheme with expanding functions will be designed. This permutation will
be a pseudorandom permutation fromkn bits tokn bits using random expanding functions fromn bits to
(k − 1)n bits. Then a compression function is constructed by xoring two such permutations and choosing a
number of bits depending on the desired length of the messagedigest.

The hash algorithm can be described in four stages: preprocessing, encryption permutation, compres-
sion function and hash computations. Preprocessing involves padding the message, setting an initialization
vector and an initial value. The hash computation uses 2 encryption permutations, the compression function
together with the Merkle-Damgård construction.

Key words: Hash Functions, Unbalanced Feistel Schemes, Expanding Functions, Cryptography with
Random S-Boxes.

2 Definitions

2.1 Glossary terms

Bit A binary digit having a value 0 or 1

Byte A group of eight bits

Word A group of either 32 bits (4 bytes) or 64 bits (8 bytes)

2.2 Algorithm parameters, symbols and terms

2.2.1 Parameters

The following parameters are used in the secure hash algorithm specifications on this standard.

M Message to be hashed.
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l Length of the messageM in bits.

p Number of zeros appended to a message during the padding step.

M̃ The padded message.

m Numbers of bits in a message block ofM̃ . m = 1024 − β.

M̃ (i) ith block of M̃ , of sizem.

It The initial value for the compression function aftert steps for the compression function.
I0 is the input value for the compression function.

Ii
t Theith 8-bit block ofIt.

H(i) Theith hash value.H(N) is thefinal hash value
and is used to determine the message digest.

β The number of bits of the message digest.

F k
d An unbalanced Feistel scheme with expanding functions ofd rounds applied on

ak-block input.

Gβ , G′

β Encryption permutations used to get aβ-bit message digest.
Gβ , G′

β are unbalanced Feistel schemes with expanding functions.

dβ The number of rounds of an unbalanced Feistel scheme needed to get
encryption permutations when the message digest hasβ bits.

gj Internal functions from8 bits to1024 bits used in the unbalanced Feistel scheme
with expanding functions to getGβ.

g′j Internal functions from8 bits to1024 bits used in the unbalanced Feistel scheme
with expanding functions to getG′

β.

Cβ The compression function.

Kt 32 bit word equal to the first32 decimals of8 × |sin(t + 29)|.

Xi...j Block obtained by choosing thej − i + 1 bits from thei-th leftmost bit to thej-th
leftmost bit ofX whereX ∈ {0, 1}1024 . If j < i then this block is void.
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2.2.2 Symbols

The following symbols are used in the secure hash algorithmsspecifications, and each operates onw-bit
words.

⊕ Bitwise OR (“exclusive-OR”) operation.

‖ Concatenation of blocks.

⌊ ⌋ Floor function.

3 Notations and conventions

The following terminology related to bit strings and integers will be used.

1. A hex digit is an element of the set{0, 1, . . . , 9, a, . . . , f}. A hex digit is the representation of a
4-bit string. For example, the hex digit “7” represents the 4-bit string “0111”, and the hex digit “a”
represents the 4-bit string “1010”.

2. A word is aw-bit string that may be represented as a sequence of hex digits. To convert a word to hex
digits, each 4-bit string is converted to his hex digit equivalent, as described in 1. above. For example,
the 32-bit string

1010 0001 0000 0011 1111 1110 0010 0011

can be expressed as “a103fe23”, and the 64-bit digit

1010 0001 0000 0011 1111 1110 0010 0011

0011 0010 1110 1111 0011 0000 0001 1010

can be expressed as “a103fe2332ef301a”.

Throughout this specification, the “big-endian” convention is used when expressing both 32- and
64 bit words, so that within each word, the most significant bit is stored in the left-most position

4 Constants

This section details on the generation of constants needed in the CRUNCH algorithm. There are exactly2×
16×256×32+28 = 262172 constants of32 bits. This represents1 MB. For t ∈ {−28;−27; . . . ; 262143}
let Kt be the32 bit word equal to the first32 decimals of8 × |sin(t + 29)|. In other words,Kt are the
decimals from4 to 35 of |sin(t + 29)|.

Here are the first28 constants:
K−28 = bb5523c2, K−27 = 463dbab4, K−26 = 210386db, K−25 = 0dee7777,
K−24 = abe07d78, K−23 = 3c3e3156, K−22 = 4182309b, K−21 = ea34a80a,
K−20 = 4c04c6c1, K−19 = 5a27bd7c, K−18 = fffadd8b, K−17 = 4ae6bdf5,
K−16 = 5c808910, K−15 = ecc38c9f , K−14 = 33ca1c73, K−13 = 4da0410b,
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Message digest (bits) IV (in hex)
224 bb5523c2463dbab4210386db0dee7777abe07d783c3e31564182309b
256 bb5523c2463dbab4210386db0dee7777abe07d783c3e31564182309bea34a80a
384 bb5523c2463dbab4210386db0dee7777abe07d783c3e31564182309bea34a80a

4c04c6c15a27bd7cfffadd8b4ae6bdf5
512 bb5523c2463dbab4210386db0dee7777abe07d783c3e31564182309bea34a80a

4c04c6c15a27bd7cfffadd8b4ae6bdf55c808910ecc38c9f33ca1c734da0410b

Figure 1: IV Values

K−12 = b0f12b10, K−11 = 02059a04, K−10 = 32f2d28f , K−09 = 4db63d57,
K−08 = b17882ec, K−07 = 1220a29f , K−06 = c50f3409, K−05 = 3e9fde46,
K−04 = 0f0e6f31, K−03 = 19b83eb0, K−02 = a6a86c39, K−01 = 2ad0a768.

These constants have been chosen because it is quite easy to calculate them, and because it is very
difficult to establish relationships between them. So we canconsider these constants as random numbers.
We will see later that it is very easy to change the algorithm so that these constants are not stored explic-
itly in memory (because it’s clear putting a required of1 MB of memory on some device can not easily
be achieved). We will see that these constants can be computed on the fly. This might slow down the
computation.

5 Preprocessing

Preprocessing shall take place before the hash computationbegins. This preprocessing consists of three
steps: padding the message, M, (Section 5), parsing the padded message into message blocks (Section 5.2)
and setting the initialization vector IV to compute the initial input of the compression functionCβ (Sec-
tion 5.3). We defineIV = K−28||...||K

−28+ β
32

−1
.

5.1 Padding the message

The messageM shall be padded before hash computation begins. The purposeof this padding is to ensure
that, in the padded message, the number of bits is a multiple of 1024 -β = m. Append the bit “1” to the
end of the message followed byp zeroes and the binary representation of the lengthl of the message.k is
chosen so that the total number of bits is a multiple ofm. The padded message is denoted byM̃ . N is the
number of blocks of sizem of M̃ .

5.2 Parsing the message

M̃ is parsed intoN m-bit blocks.

5.3 Setting the initialization vector and computing initial value

An initialization vectorIV of size β is defined (see Figure 1) and the initial value for the compression
function is obtained by concatenatingIV and the leftmost m bits of the padded message (the first block of
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M̃ ). This is given by
I0 = IV ‖M̃ (0).

I0 is of size 1024.

6 Encryption Permutations

6.1 Unbalanced Feistel Schemes with Expanding Functions

An unbalanced Feistel scheme with expanding functions enables to construct a pseudorandom permutation
from kn bits to kn bits by using random functions fromn bits to (k − 1)n bits. The first round of an
unbalanced Feistel scheme with expanding functions is given in Figure 2. Ifd rounds are applied, the
scheme is denotedF k

d .
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0
(I0) I2 ⊕ g1

0
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Figure 2: First round of an unbalanced Feistel scheme with expanding functions, fork = 128

When the internal functions are secret, generic attacks on these schemes have been studied in [9]. When
k + 2 ≤ d ≤ 2k, the best generic chosen plaintext attacks need2(d−k−1)n messages. For example, when
k = 128 andn = 8, d = security

8 + 129. Here the functionsgj are public and are not completely random
(as explained in Section 6.2) since there are constraints related to memory space. Obviously, the security
bounds are not the same when the internal functions are public.

For symmetric Feistel schemes, the following study is givenin [4]. It refers to the model of indiffer-
entiability for hash functions (see [6] and [3]). Two systems are described. In the first system, the random
oraclesgi (inner functions) are randomly chosen and a permutation based on a symmetric Feistel scheme
is constructed. In the second system, a permutationP is randomly chosen and the inner functionsgi are
simulated by a simulator with oracle access toP . It is shown in [4] that, with 5 rounds, 4 messages are
enough to distinguish both systems. This contrasts with theclassical Luby-Rackoff result where 4 rounds
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Message digest Security Unbalanced Feistel schemeF 128
d Encryption Permutation

(bits) (bits) (Number of rounds) (Number of rounds)
224 112 143 224
256 128 145 256
384 192 153 384
512 256 161 512

Figure 3: Secure Hash Algorithm Properties.

are enough to obtain a strong pseudo-random permutation from pseudo-random functions. However, with 6
rounds the distinguisher is not able to tell which system is used.

The encryption permutations of CRUNCH are based on unbalanced Feistel schemes with internal public
expanding functions. The number of rounds will depend on thelength of the message digest. Two facts are
taken into account. Firstly, the security bound for chosen plaintext attacks of [9] are given when the inner
functions are secret. This number of rounds is increased. Secondly, it is more secure to choose a number of
rounds to make sure that all the Bytes are used the same numberof times. Thus, we choose for the number
of rounds a multiple of 128. Ifβ is the length of the message digest, the number of rounds isdβ = β.
Figure 6.1 shows the number of rounds needed to reach the security bound in the case of an unbalanced
Feistel scheme and the number of rounds chosen for the encryption permutations depending on the length
of the message digest.

Using Unbalanced Feistel schemes with expanding functionsenables to construct two encryption permu-
tations, which depend onβ ∈ {224, 256, 384, 512} and are denoted byGβ andG′

β . They are permutations

from ({0, 1}8)128 = {0, 1}1024 to {0, 1}1024.

6.2 Internal Functions, Random S-Boxes

To generate the encryption permutationsGβ andG′

β based on Unbalanced Feistel Schemes let us construct
the internal functionsgi andg′i, which will stand for random S-Boxes.

There are2d internal functions to define, whered is the number of rounds. Each function maps8 bits
onto1016 bits. For0 ≤ j ≤ d − 1, gj represents the internal function of the first permutation, and g′j the
internal function of the second permutation. The first16 functions of each permutation will be completely
independent, since they do not use the same constantsKt (see Section 4).

Let j be an integer between0 andd − 1, andi an integer between0 and255. We want to define the
1016 bits word ofgj(i), and also the1016 bit word equal tog′j(i).

Let j̄ = j mod128, andq = ⌊ j
16⌋. We define:

α(j, i) = (2q + 1)i mod256

And then

γ(j, i) = (j mod16) × 256 × 32 + 32 × α(j, i) − 4 × ⌊
j̄

16
⌋

And:
γ′(j, i) = γ(i, j) + 16 × 256 × 32
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Now, for γ integer between−28 and131040 included, letZγ be the1024 bit word equal to:

Zγ = Kγ ||Kγ+1|| . . . ||Kγ+31

Finally:
gj(i) = (Zγ(j,i))(8j̄+8)...1023||(Zγ(j,i))0...(8j̄−1)

and
g′j(i) = (Zγ′(j,i))(8j̄+8)...1023||(Zγ′(j,i))0...(8j̄−1)

The definition ofgj(i) uses consecutive predefined constants, and forj > 16, gj(i) is equal to a con-
catenation of bits fromgj mod16(α(j, i)) and fromgj mod16(α(j, i) − 1).

7 The Compression Function

Gβ andG′

β are the two encryption permutations obtained in the previous section. Then the compression
functionCβ is defined by

Cβ(I) = (Gβ(I) ⊕ G′

β(I))0...(β−1)

For example, ifβ = 224, C224(I) will take the 224 leftmost bits ofGβ(I) ⊕ G′

β(I).
Taking the Xor of two secret permutations increases the security properties. It is shown in [7] and [8],

that for the Xor of two secret permutations fromL bits to L bits the security bound for the number of
messages is2L.

8 Secure Hash Algorithm

The CRUNCH algorithm is described in this section. Forβ ∈ {224, 256, 384, 512} the final result will be
aβ-bit digest of the message.M is the message to be hashed.M̃ is the padded message which containsN

m-bits blocks.IV is the initialization vector. The compression functionCβ is used. The algorithm proceeds
as follows (see also Figure 4):

H(1) = Cβ(I0)
For i = 1 to N − 1

Ii = H(i)‖M̃ (i)

H(i+1) = Cβ(Ii)
EndFor

H(N) is the message digest.
The mode of operation of this hash algorithm is shown below:

CHAINING MODE

IV
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M̃ (0) M̃ (1) M̃ (2) M̃ (3) M̃ (N−1)

M̃ (0)

Gβ G′

β

0 β-1

M̃ (1)H(1) = Cβ(I0)

I0

Gβ G′

β

0 β-1

M̃ (N−1)

IN−1

H
(N)

H(N−1)

IV

Figure 4: CRUNCH hash algorithm

10



9 Example

MessageM = abcdefgh, of length equals to48 bits.
We show below the first values ofI and values of the internal functions.

Round number 0: ForG
I0 bb5523c2463dbab4210386db0dee7777abe07d783c3e31564182309bea34a80a

6162636465666768800000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000040

⊕
g0(0xbb = 187) ..13f8c0b20b9d384d48893331e92c6802b6f5a3b0a72c464c9eefc234962ca3

ec9ebe525b8cb3184bc96d1ffffbfc52594644374cf98b67ea5bae2740b79752
3d402551ac2ca2f80d3ecc40220d807546ad796ebac3eab7010cac68bbe63f24
45cddbee1ff988470e9e0800ab94362b3b3c3381424cb2bbea0d7f0d4b0ff394
ForG′:

I ′0 = I0 bb5523c2463dbab4210386db0dee7777abe07d783c3e31564182309bea34a80a
6162636465666768800000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000040

⊕
g′0(187) ..d52d5d17bb7f0b92a5f3dcf41b03ce0593a73286e7c464c0a02b87d9b0b7d2

6e36f0ee656c6ada8fd3dada4e31b07be4530ff72457d238d364376f3fe99687
9443a5a1f0befc6c7b7a6a5add59ddab042881e69af40af2fe23fe22081d9cbc

a2d4e666f5fa04d8f76a51d8981452bec505c680cd447f0e80091bd76c421854

Round number 1: ForG
I1 46db02f436278c6c4b0fe83c075b1fa95688db8c991d100d1cdf59dea284a98d

fcdd363eead470cbc96d1ffffbfc52594644374cf98b67ea5bae2740b797523d
402551ac2ca2f80d3ecc40220d807546ad796ebac3eab7010cac68bbe63f2445
cddbee1ff988470e9e0800ab94362b3b3c3381424cb2bbea0d7f0d4b0ff3d4bb

⊕
g1(0x46 = 70) ..a015cf80583afa5839eacf77370bc79dfcacd07143f8aa11f82db17d6a707e

805ab467a6cb2e92afb5fc0629587b046a4d8d8f0d977e69d4d78b7d3943c7ad

ede9bbaca3da9fcfa8ad03c4335824d25fc4acfa1226b5cc4c1168df66f1ecfb

9c60e1c0eee520d896558bd43f77939d365958c3308ebd84c51b4a5cb9c12ddc

ForG′:
I ′1 800e9f5186c5bfb3a67507f9f574b9ae73da4abad9f53281221b1c33841fd80f

54938a000a0db20fd3dada4e31b07be4530ff72457d238d364376f3fe9968794
43a5a1f0befc6c7b7a6a5add59ddab042881e69af40af2fe23fe22081d9cbca2
d4e666f5fa04d8f76a51d8981452bec505c680cd447f0e80091bd76c421814bb

⊕
g′1(0x80 = 128) ..d131eb2f92e83c5d4aa942c8280dadcc7c1e0978279927c1e8ba4910f43bb7

a446ff06d03f50bf011e7943653a5f1a4453581260630fa9eeee4a35b29b8846
a34690e933ff6d45ce58185fddb5c2fff03e9545254b9062ae20bfedaf2db92e

9b24075425d050b2ce54e8fd83aac139aeeeda507b6303adbab56618f0c9df52
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Round number 255: ForG
I255 5e488dffcd0874a7f0f73ffec4b29ef61421397c712dea6f4806f37130e79a56

2d18938eda567a836366d8d5b40d38a3af22d8ccf972983e153454c27b7ea6e9
0bab2f788bdf69dd8d359b1187e626006bf6367148b705a7d091d52256bf93c2
4cd7119fb0ba7c2561bbbf18d8a46f7c262d8a72b60f7c7852d21051af64a710

⊕
g255(0x5e) 00ed47461030e8c0e45140c543b1fb2b74ff84871336b192504f4131baaf648d

5b15ea6d6fc71334bc3d03abc30b4d02611c2af7c9a58c3ccc272ad6c951f42e
6ce6e6a38f380093126c7af579ffc4041d385840be70571627efa4f74823106a

7362947d8cb6dc1768f37665f7489960fa568c5924a55e666b280a93c6d0a338
ForG′

I255 58a17b94a9b9eab01df56be1b7c1feaad1d1068d5937358f431908ebf9ddb854
72efe6bd29d720b1e718b338fb28e45c3663f6f503ddd49033a6a870a1146053
0e88bd1fb78b08a34adaced51584a0c0157e85293864b670d413ba5044ae8298
a27f9cabde29b3b34f57584dc38063ae00e1daa6173101909b2cca17a9499717

⊕
g′255(0x58) 0063da77d68354fd216d947c9683862f3ccad1d37fc5ddab239b7049d8f4a0ee

2ff65317a8a5fe8ae1050bc845fdfc76b89ddb285400ddf719dcb286937e1021
07ed4c9855931fd8464220a7fdcfdba34a22bd65c0e62022a351be59c38dcb06
3866c6444771b57f82d743e7adc17fdfa08a4650b402cf487ef47c185a95d33a

Finally the hash value of ”abcdefgh”:

676b5aa202222a283e80a6a6411d588dc56aa544e9b3d978cbcae2ab61e6612b

We can notice that67 = 48 ⊕ ed ⊕ a1 ⊕ 63

Part II

Computational efficiency

10 Memory Size/Speed

All of the constants to be stored (namely the S boxes) requirearound1MB of storage. It is small enough to
fit in the L2 (L3) caches of most of the recent general purpose microprocessors (x86 for example). Fitting
the S boxes in the L1 caches might be much more difficult due to the very limited size of the L1 Dcache
(typically 32 KB). However, experimentally we have checkedthat fitting in L1 cache will only give marginal
performance improvement due to the good bandwidth of L2 caches and efficient prefetch mechanisms from
L2 to L1. At the other end of the spectrum (on smart cards), 1 MBof storage requirements might be hard to
accomodate within the current generation but we first believe that there will be a general trend to improve
storage capacity and second we describe a mechanism to compute on the fly the S boxes allowing to reduce
the storage requirements.
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One excellent feature of CRUNCH is that besides data access (reading values from S boxes), the com-
putational structure is remarkably simple: a loop around XOR operations (which is one of the simplest
operations to perform, much simpler and efficient than an addor a shift operation). There is no complex
control structure (which could lead to branch misprediction). In fact the key performance limiting factor of
CRUNCH is data access.

11 Implementation

For the implementation, it is far better to avoid shifting data between each round of the permutations: this
can be simply done by a clever adressing. Except maybe for8 bit processors, because data is already divided
into 8 bit-blocks, so it might be easier to shift them.

12 64-bit processors

Machine 1:
Processor: Intel Core 2 Duo E6400 @2.13GHz (cache L1 data 32KB, cache L2 2MB)
RAM: 4GB DDR2 dual channel
OS: kubuntu 8.04.1 64bits with KDE 3.5
compiler: icc v10.1
compilation options: -fast

Message digest Message Size Number of cycles Speed
(bits) (MB) (MB/s)
256 100 16, 95 ∗ 109 12,59
384 100 29, 62 ∗ 109 7,24
512 100 46, 97 ∗ 109 4,55

13 32-bit processors

Machine 1:
Processor: Intel Core 2 Duo E6400 @2.13GHz (cache L1 data 32KB, cache L2 2MB)
RAM: 4GB DDR2 dual channel
OS: kubuntu 8.04.1 64bits with KDE 3.5
compiler: icc v10.1
compilation options: -O3 -march=pentium4

Message digest Message Size Number of cycles Speed
(bits) (MB) (MB/s)
224 100 25, 16 ∗ 109 8,48
256 100 29, 87 ∗ 109 7,15
384 100 52, 36 ∗ 109 4,08
512 100 86, 42 ∗ 109 2,47
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Machine 2:
Processor: Intel Core Duo T2300e @1.66GHz (cache L1 data 32KB, cache L2 1MB)
RAM: 1GB DDR2 dual channel
OS: kubuntu 8.04.1 32bits with KDE 3.5
compiler: icc v10.1
compilation options: -O3 -march=pentium4

Message digest Message Size Number of cycles Speed
(bits) (MB) (MB/s)
224 100 29, 26 ∗ 109 5,68
256 100 34, 23 ∗ 109 4,88
384 100 60, 55 ∗ 109 2,74
512 100 100, 38 ∗ 109 1,66

14 8-bit processors

The following estimate has been obtain on an 8-bit simulatorof a smart-card, using the compiler IAR / AVR.
(AVR is the standard 8 bits atmel)

Message digest Message Size Number of cycles Speed
(bits) (bits) (KB/s)
224 800 535585 3,82
256 768 612097 3,21

Part III

Known Answer Tests and Monte Carlo Tests
We reproduce here some results of CRUNCH with a digest size equal to256 bits. For the complete results,
see the appropriate file.

Len = 5
Msg = 48
MD = 7EE0FE99FE6636C2A895D6AB19253A0F5657B864CBD34FB334334722E6C2CB58

Len = 6
Msg = 50
MD = BF6CDBB2572C73612A5E9EB39BD431D57D26F8795E4F77F8AFF5492F2947CC2C

Len = 7
Msg = 98
MD = 6E7367AAACD265B0A0E1E9860413516716AD3027C98194F5149695F5521F55BC

Len = 8
Msg = CC
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Algorithm Message Size Block Size Word Size Message Digest SizeSecuritya

(bits) (bits) (bits) (bits) (bits)
CRUNCH-224 < 264 1024 32 224 112

CRUNCH-256 < 264 1024 32 or 64 256 128

CRUNCH-384 < 2128 1024 64 384 192

CRUNCH-512 < 2128 1024 64 512 256

aIn this context, “security” refers to the fact that a birthday attack [HAC] on a message of sizen produces a collision with a
factor of approximately2n/2.

Figure 5: Secure Hash Algorithm Properties.

MD = A819196D71E8CDFABEA307A61A59302DD3FB71FCE0E0D84B0BF656E8FA36D180

Repeat = 16777216
Text = abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmno
MD = 6521EDFAD4166903A03239D021DFC77CA5CBB44D4AA45D90CDD336B91CF17C82

Part IV

Expected Strength
The expected strength of the CRUNCH algorithm is summarizedin Figure 5.

Part V

Analysis of Known Attacks

15 Background

The design of CRUNCH is based on the XOR of two (fixed) permutations.
The idea of using a block cipher goes back to Preneel, Govaerts and Vandewalle [10] and further ana-

lyzed by Black, Rogaway and Shrimpton [2] who proved that among 64 possible constructions, 20 of them
are collision-resistant up to the birthday bound in the black-box model.

However, in all these constructions, the key is changed every round, which is usually a serious drawback
as concerns efficiency. Hence the idea of building a hash function with block ciphers whose keys are fixed.

The possibility of designing a secure hash function whose underlying compression function uses exactly
one call to a (fixed key) block cipher was studied by Black, Cochran and Shrimpton [1]. They essentially
proved that such a construction cannot reach aprovenlevel of security, by exhibiting a collision attack with
O(n) oracle accesses to the block cipher (modelized as an ideal cipher). Even if this attack is not practical
(it requires building a tree withΩ(2n) nodes, wheren is the bit size of the blocks), it shows that it is not
possible to obtain a proof of security against adversaries with unlimited computational abilities.

As an example, we could consider a variant where, instead of Xoring two permutation, the compression
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function with one encryption permutationGβ is defined by

Cβ(I) = (Gβ(I) ⊕ I)0...(β−1)

The obtained scheme will be approximately twice faster thanCRUNCH, but cannot be proven secure.
As a consequence, hash functions using with a compression function using two calls to (fixed key) block

ciphers are worth considering.

16 Collision attacks

Rogaway and Steinberger [12] investigated the case of hash functions whose compression function uses
two calls to fixed key block ciphers. They describe a generic attack for collision finding, which gives an
upper bound for the security. More precisely, the best knownattack requiresO(2n/2) oracle accesses to the
permutations and a time complexityO(n.2n/2). This means that – for the best constructions based on 2
permutations – one cannot have a security, against collisions, better thanO(2n/2). Note also that [5] gives
an attack inO(23n/8) oracle accesses and time complexityO(23n/8).

For CRUNCH-β, we haven = 1024, and the best known attack is the birthday attack, whose complexity
is in O(2β/2).

Moreover, for similar constructions (see [5]), Fouque, Stern and Zimmer proved that finding a collision
on the compression function (and thus for the whole hash function) requiresΩ(2n/4) oracle accesses to the
permutations.

17 Preimage attacks

In [12], Rogaway and Steinberger also investigated preimage attacks for hash functions based on a com-
pression function using two calls to (fixed key) block ciphers. They describe a generic attack for preimage,
which gives an upper bound for the security. More precisely,the best known attack requiresO(2n/2) oracle
accesses to the permutations (and a time complexity> 2n). This means that – for the best constructions
based on 2 permutations – one cannot have a security, againstpreimage, better thanO(2n/2). Note also that
[5] gives an attack inO(23n/4) oracle accesses, time complexityO(n.23n/4) and spaceO(23n/4).

For CRUNCH-β, we haven = 1024, and the best known attack has a complexityO(2β).
Moreover, for similar constructions (see [5]), Fouque, Stern and Zimmer proved that finding a preimage

for hash function requiresΩ(2n/2) oracle accesses to the permutations.
It should be noted that we carefully studied preimage attacks for many variants of CRUNCH. In partic-

ular, some variants lead to very efficient hash functions, but unfortunately are trivially broken. For instance
if, instead of Xoring permutation, only one encryption permutationGβ is considered and if the compression
function is defined by dividingGβ(I) into two parts and then Xoring them, the following attack will be
possible. Given a digestH, it is possible to obtainI so thatCβ(I) = H. Since the internal function are
public, it is enough to go backward from the element[S, S ⊕ H] ∈ {0, 1}1024 whereS is any element of
{0, 1}512.
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Part VI

Advantage and limitations

18 Parallelization

Our algorithm can greatly benefit from the new coming multicore organization which is becoming a de facto
standard on most of the general purpose microprocessors.

First of all, the way the message is compressed can be easily changed: for example, the message can be
compressed level by level, as shown on the figure below (ratio4 to 1) :

This is a real advantage when the message to be hashed is very long. The computational time becomes then
proportional to the logarithm of the size of the message.

Second, the two permutation functions can be evaluated in parallel, since their computations are inde-
pendent. This gives an extra performance gain of2.

19 Vectorization

Our CRUNCH algorithms lends itself very well to “vectorization”: 128 bits long XOR operations can
be easily used for performing the operations of the innermost loop. Such operations are available on a
large number of modern general puropose microprocessors (SSE, Altivec etc.). Future extensions of these
instruction to 256 or 512 bit long operations can also be easily used by our algorithm. Tests performed using
a state of the art compiler such as ICC (Intel C Compiler) V10 has shown that the innermost loop can be
easily fully vectorized and optimized using the full set of registers available (without having to hand code in
assembly language to get peak performance).

20 8-bit processors

We can easily implement the algorithm in a 8-bit processor machine, for there are no complicated operation.
The figure1 show that it works well in a 8-bit environment. Neverthelessthere is a difficulty to store all the
S-boxes (1 MB). Such a difficulty could be avoided if we implement a little algorithm to generate only the
values of the S-boxes that we need (on the fly). There, we need away to generate efficiently and exactly the
35 first decimals of the sinus of an integer between1 and262173. Of course, we can imagine other ways to
generate these boxes. For example, as the AES is often implemented on smart cards, we could replace the
S-boxes by a random number generated by the AES. For this purpose, the128 bits ofAES(i) could be used
to generate4 constants. This surely will slow the process, although thisalso a way to increase the security
as1024 different S-Boxes instead of only32 can be generated in the same way .
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21 Other Digest Size

Any other size of digest message smaller than512 bits. If we want a digest size bigger than512 then we
have to change the size of the message block, which has to be atleast twice the digest size. For security, we
recommend a number of rounds equal to the maximum between thedigest size and224.

Part VII

Variants
There are several possible variants for the CRUNCH hash function.

22 Variants on the S-Boxes

• To implement the CRUNCH hash function on smart cards, the AESblock cipher (instead of the sine
function) can be chosen to generate the constants needed forthe internal functions.

• Another variant is to have true random internal functions.

• In order to construct the encryption permutation, it is alsopossible to have 32 instead of 16 internal
functions. This choice of 16 functions is due to the L2 cache memory.

23 Variants on the design

A variant is to consider only one encryption permutationG and to computeG(I) ⊕ I instead of taking the
Xor of two permutations as explained in Part V. However we do not recommend this variant.

24 Variants on the encryption permutations

In the design of the encryption permutations, it is also possible to choose other group laws (e.g. addition
modulo21024) and to have different laws for each encryption permutation.

25 Variants on the Merkle-Damg̊ard construction

As explained in Section 9, the CRUNCH algorithm is parallelizable.

26 The Future

With more memory space, instead of having internal functions from 8 bits to 1024 bits, it could be possible to
choose internal function from 16 bits to 1024 bits with an analogous structure (unbalanced Feistel schemes
with expanding functions).
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Part VIII

Conclusion
The proposed hash algorithm (CRUNCH) has an extremely simple structure: basically the innermost loop
amounts to accessing S-boxes and XORing the data accessed. Its simplicity is key to our design because
it allows simple and efficient implementation on almost any microprocessor, it simplifies its protection
and finally it makes easier to establish a direct relation between CRUNCH security and a generic (well
known) security problem. The simplicity of its computational structure is compensated by the requirement
of accessing (and storing) S-boxes whose total size is around 1 MB. This storage requirement can be lifted
by computing on the fly the S-boxes. Although it increases thecomputational requirements, it does not alter
any properties on the security of CRUNCH.
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