
Zero Knowledge with Rubik’s Cubes and
Non-Abelian Groups

Emmanuel Volte1, Jacques Patarin2, and Valérie Nachef1

1 Department of Mathematics, University of Cergy-Pontoise, CNRS UMR 8088
2 avenue Adolphe Chauvin, 95011 Cergy-Pontoise Cedex, France

2 PRISM, University of Versailles
45 avenue des Etats-Unis, 78035 Versailles Cedex, France

emmanuel.volte@u-cergy.fr

Abstract. The factorization problem in non-abelian groups is still an
open and a difficult problem [12]. The hardness of the problem is illus-
trated by the moves of the Rubik’s cube. We will define a public key iden-
tification scheme based on this problem, in the case of the Rubik’s cube,
when the number of moves is fixed to a given value. Our scheme consists
of an interactive protocol which is zero-knowledge argument of knowl-
edge under the assumption of the existence of a commitment scheme. We
will see that our scheme works with any non-abelian groups with a set
of authorized moves that has a specific property. Then we will generalize
the scheme for larger Rubik’s cubes and for any groups.

Key words: zero-knowledge, Rubik’s cube, authentication, symmet-
ric group, cryptographic protocol, factorization

1 Introduction

The puzzles based on the Rubik’s cube meet a great success. Generally
speaking, Rubik’s cube’s owners try to solve the following problem: how
to recover the initial position of the cube from a random position. At
first sight, this problem seems very difficult, but there exist efficient al-
gorithms to solve it [2]. Nevertheless, several other problems with the
cube and its neighboring puzzles seem to be really difficult from a com-
puting point of view. For example if we impose that the number of moves
is equal (or inferior) to a fixed value d that makes unique or almost
unique the moves that must be done to recover the cube, then we obtain
a difficult problem. In [2] it is showed that finding an optimal solution
(i.e. the minimum factorization) is NP-hard if we ignore some of the
facets of the cube n × n × n. Moreover the size of the Rubik’s group
grows exponentially with the number of facets. In appendix A, we will
also discuss some connections between these problems and NP-complete
or NP space problems.
Consequently, we can try to build some public key zero knowledge ar-
gument of knowledge protocols with a proven security linked to these
difficult problems (and also on the existence of a commitment scheme).
Then we can use this protocol to do identification. It is well known that

there exist cryptographic algorithms transforming every NP problem into
a zero knowledge authentication protocol [5]. The theoretical way to do
this is polynomial but nevertheless generally not efficient at all. This is
why we will present and study some specific algorithms in this article,
which can be used for practical cryptography and with a proven security
based on some difficult well-known problems of the Rubik’s cube.

Our algorithm is the first serious attempt to make zero knowledge argu-
ment of knowledge with the Rubik’s cube. There were obvious ways to
do zero-knowledge with this toy. For example, we can scramble the cube
and memorize all the moves, then we can prove that we can recover the
initial position under a scarf. Nevertheless, since some people can recover
the cube even without seeing it, this is not a sure way to authenticate
oneself. As Colmez says in [1], the Rubik’s cube is one of the rare groups
we can walk with in the street.

Organization of the paper. In Section 1 we introduce all the notations
and the definition of the repositioning group that is crucial to write all
our schemes. In Section 2 we define the problem we will use for our
zero knowledge argument of knowledge, this problem is equivalent to the
factorization with a fixed number of elements from a given set. We also
see the generic attack for this problem. In Section 3, we show how to
construct a scheme that is zero knowledge argument of knowledge, in the
case of the Rubik’s cube 3 × 3 × 3, and we prove that this still works
for any group and any set of generators that has a repositioning group.
The scheme we will propose is an interactive one with 3 pass. We use a
standard cut-and-choose technique.

– First, the Prover hides each move of the solution thanks to a rotation
of the cube. By doing this, we still can see that she makes a basic
move but without knowing which one.
Then she masks all the turned moves with a unique random permu-
tation that preserves the composition. Finally, the Prover only sends
commitments of the rotation, of the random permutation used for
masking and of all the masked permutations.

– The verifier asks for some verification. She has the choice of verifying
the entire composition or only one of the turned moves. She can not
check 2 moves simultaneously because she will have the information
of the equality or not of the two initial moves.

– The prover reveals some of the permutations and the Verifier checks
the answer, then accepts or not.

In Section 4, we try to do this with the Rubik’s cube 5×5×5. The diffi-
culty is that the set of generators has no repositioning group. By working
in larger groups, we manage to construct a scheme that is suitable for
cryptographic applications, and that is quite efficient. In Section 5, we
first generalize the scheme for any group and any set of generators, and
then for a number of moves that is not constant but inferior to a given
value, for example the diameter of a group. There are recent papers [14]
that help us give an approximation of this value for some groups and for
some set of generators. These works try to answer Babai’s conjecture on
the diameter of simple groups. In the case of the Rubik’s cube, in [2] it is
shown that “God’s number”, i.e. the minimal number of moves to solve

a Rubik’s cube n×n×n is Θ(n2/log(n)). At last, in Section 7, we will
briefly discuss the efficiency of our schemes.

2 Notations and definitions

2.1 Mathematical standard notations and definitions

Most of the following notations can be found in [8], which is an original
way to learn algebra with toys such as the Rubik’s cube and the Merlin’s
machine.
For a finite set X, SX is the symmetric group of X. In the particular case
X = {1; 2; . . . ;n} where n ∈ N∗, we call this group Sn. For σ, σ′ ∈ SX ,
we use the classic notation σσ′ to design the composition σ′ ◦ σ.
When G is a group, and (g1, g2, . . . , gα) ∈ Gα, then 〈g1, g2, . . . , gα〉 is the
subgroup generated by g1, g2, . . . gα.
We say that F = {g1, . . . , gα} is a set of generators of G when
〈g1, g2, . . . , gα〉 = G. This set is symmetric when for all σ ∈ F we
have σ−1 ∈ F .
When we have a symmetric set of generators F of a group G, we set
that two elements g and g′ are in relation if and only if g−1g′ ∈ F . The
corresponding graph is called the Cayley graph of the group.
Let G be a group, the conjugation on G is defined by

∀(σ, τ) ∈ G2, στ = τ−1στ

Moreover we have:

∀(σ, σ′, τ, τ ′) ∈ G4, (στ)τ
′

= σττ
′
, στσ′τ = (σσ′)τ

We can also write σG = {σg|g ∈ G} .

2.2 Mathematical representation of the Rubik’s cube.

For the Rubik’s cube, we can write a number on each facet except the
centers. In this paper we consider that all the centers are white or void
(there exists in fact a physical cube that has no centers). Not taking in
consideration the centers will not really change the complexity of all the
problems

1 2 3

4 U 5

6 7 8

9 10 11

12 L 13

14 15 16

17 18 19

20 F 21

22 23 24

25 26 27

28 R 29

30 31 32

33 34 35

36 B 37

38 39 40

41 42 43

44 D 45

46 47 48

UUUUUUUUU
1 2 3

4 U 5

6 7 8

9 10 11

12 L 13

14 15 16

17 18 19

20 F 21

22 23 24

25 26 27

28 R 29

30 31 32

33 34 35

36 B 37

38 39 40

41 42 43

44 D 45

46 47 48

UUUUUUUUU
1 2 3

4 U 5

6 7 8

9 10 11

12 L 13

14 15 16

17 18 19

20 F 21

22 23 24

25 26 27

28 R 29

30 31 32

33 34 35

36 B 37

38 39 40

41 42 43

44 D 45

46 47 48

UUUUUUUUU
1 2 3

4 U 5

6 7 8

9 10 11

12 L 13

14 15 16

17 18 19

20 F 21

22 23 24

25 26 27

28 R 29

30 31 32

33 34 35

36 B 37

38 39 40

41 42 43

44 D 45

46 47 48

UUUUUUUUU
1 2 3

4 U 5

6 7 8

9 10 11

12 L 13

14 15 16

17 18 19

20 F 21

22 23 24

25 26 27

28 R 29

30 31 32

33 34 35

36 B 37

38 39 40

41 42 43

44 D 45

46 47 48

UUUUUUUUU
1 2 3

4 U 5

6 7 8

9 10 11

12 L 13

14 15 16

17 18 19

20 F 21

22 23 24

25 26 27

28 R 29

30 31 32

33 34 35

36 B 37

38 39 40

41 42 43

44 D 45

46 47 48

UUUUUUUUU
1 2 3

4 U 5

6 7 8

9 10 11

12 L 13

14 15 16

17 18 19

20 F 21

22 23 24

25 26 27

28 R 29

30 31 32

33 34 35

36 B 37

38 39 40

41 42 43

44 D 45

46 47 48

UUUUUUUUU
1 2 3

4 U 5

6 7 8

9 10 11

12 L 13

14 15 16

17 18 19

20 F 21

22 23 24

25 26 27

28 R 29

30 31 32

33 34 35

36 B 37

38 39 40

41 42 43

44 D 45

46 47 48

UUUUUUUUU
1 2 3

4 U 5

6 7 8

9 10 11

12 L 13

14 15 16

17 18 19

20 F 21

22 23 24

25 26 27

28 R 29

30 31 32

33 34 35

36 B 37

38 39 40

41 42 43

44 D 45

46 47 48

UUUUUUUUU

then we define 6 permutations of G = S48 which are the basic clockwise
quarter turns of the faces:

F = (17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11)
B = (33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27)
L = (9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35)
R = (25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24)
U = (1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19)
D = (41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40)

after the move σ, the facet i ∈ {1, 2, . . . , 48} is at the σ(i) position.
The Rubik’s cube group is GR = 〈F,B,L,R, U,D〉 ⊂ S48. If you want
to simulate the Rubik’s cube, this can be done by using SAGE [16].

2.3 Cryptographic notations.

When X is a finite set, x ∈R X means that we take a random element
in X with a uniform probability.
In an interactive Protocol, there are two entities: the prover and the
verifier. The Prover wants to convince the verifier that she knows a secret.
Both interact and at the end, the verifier accepts or refuses. In Zero-
Knowledge Protocols there is a possibility of fraud. A cheater will be
able to answer some of the questions (but not all of them). The protocol
must be designed such that an answer to one of the questions does not
give any indication on the secret but if someone is able to answer all
the questions then this will reveal the Prover’s secret. We will use the
following definitions in order to describe the properties that we want to
be satisfied by our protocols:
1. The protocol has perfect correctness if a legitimate prover is al-

ways accepted.
2. The protocol is statistically zero knowledge if there exists an

efficient simulating algorithm U such that for every feasible Verifier
strategy V , the distributions produced by the simulator and the
proof protocol are statistically indistinguishable.

3. The protocol is proof of zero knowledge with error knowledge
α if there is a knowledge extractor K and a polynomial Q such
that if p denotes the probability that K finds a valid witness for x
using its access to a prover P ∗ and px denotes the probability that
P ∗ convinces the honest verifier on x, and px > α, then we have
p ≥ Q(px − α).

In our protocols, we will need string commitment schemes. A string com-
mitment function is denoted by Com. The commitment scheme runs in
two phases. In the first phase, the sender computes a commitment value
c = Com(s; ρ) and sends c to the receiver, where s is the committed
string and ρ is a random string. In the second phase, the sender gives
(s, ρ) and the receiver verifies if c = Com(s; ρ). we require the two fol-
lowing properties of Com.
1. The commitment scheme is statistically hiding if for uniform (x, ρ)

and (x′, ρ′) the distributions Com(x, ρ) and Com(x′, ρ′) are statisti-
cally indistinguishable. This means that the commitment to x reveals
(almost) no information on x even to an infinitely powerful Verifier.

2. The commitment scheme is computationally binding if the prob-
ability to that two different values (x, ρ) and (x′, ρ′) produce the
same c = Com(x, ρ) = Com(x′, ρ′) is negligible in polynomial time,
i.e. the chances to change the committed value after the first phase
are very small.

A practical construction of such a commitment is given in [7].

For all of our schemes we will use an interactive commitment, it means
that we have to send a key to unlock the commitment. We use the no-
tation Comk(x) to design such a commitment of x with the key k where
k is a 80-bit random word.

2.4 The repositioning group

In this Section, we will define precisely the repositioning group for a given
set of elements F . We will see in the next Sections that the existence of
this group is the keystone of our schemes.

Definition 1 Let F = {f1, . . . , fα} ⊂ G, where G is a group. If there
exists a subgroup H ⊂ G such that f1

H = {h−1f1h | h ∈ H} = F then
H is called a repositioning group of F .

Remark. In the case of the Rubik’s cube, with F = {F,B,L,R, U,D},
it is easy to see that we can go from one move to another by rolling the
cube like a dice.

Proposition 1 We suppose F has a repositioning group H. If we choose
τ ∈R H, P (fi

τ = fj) = 1
α

for all (i, j) ∈ {1; . . . ;α}2.

Proof. Since f1
H = F , for all i ∈ {1, . . . ;α} there exists τi ∈ H such

that f1
τi = fi. Then, for all j ∈ {1; . . . ;α} , fi

τi
−1τj = fj . We denote by

τij = τi
−1τj . Now we have the equivalence:

fi
τ = fj ⇐⇒ fk

τkiττj` = f`

for all k, ` ∈ {1; . . . ;α}. So {τ ∈ H | fiτ = fj} and {τ ∈ H | fkτ = f`}
are in bijection and have the same cardinality.

Remark. It is not easy to find a repositioning group in the general case.
When the group elements in F are not conjugate of each other, it is even
impossible. We will still see a way to do this for the general case (i.e. for
any set of generators F), with the help of an extended set. Nevertheless
the general construction is often not the optimal solution. For example,
in the case of the Rubik 5×5×5 the orientation preserving group of the
cube enables us to work on S144

2 instead of S144
12.

3 Various Factorization Problems

For all the following problems, we have a finite group G with a set of α
generators F = {f1; f2; . . . ; fα}, containing all authorized permutations.
Of course we have fi 6= fj , if i 6= j.
id ∈ G is the neutral element of G.

Problem 1: Solving the puzzle.
Given x0 ∈ G, find d ∈ N and i1, i2, . . . , id ∈ {1; 2; . . . ;α} such that

x0fi1fi2 . . . fid = id

Remark This problem is equivalent to the factorization problem in G
with elements of F because:

x0fi1fi2 . . . fid = id ⇐⇒ x−1
0 = fi1fi2 . . . fid

Problem 2: Solving the puzzle in a given number of moves.
Given x0 ∈ G and d ∈ N∗, find i1, i2, . . . , id ∈ {1; 2; . . . ;α} such that

x0fi1fi2 . . . fid = id

Proposition 2 We can find a solution of problem 2 with O(dαd/2) com-
putations if d is even.

Proof. This is a meet-in-the-middle attack. We notice that fi1fi2 . . . fid =
x0 is equivalent to x0fi1 . . . fid/2 = (fid)−1 . . . (fid/2+1

)−1.
So, for each i1, i2, . . . , id/2 ∈ {1, . . . , α} we compute

Yi1i2...id/2 = x0fi1fi2 . . . fid/2

and Zi1i2...id/2 = (fi1)−1(fi2)−1 . . . (fid/2)−1

Then we look for a collision between Y and Z.

Remark. There are other techniques of factorization [12] that are using
a tower of groups. Nevertheless these techniques do not lead us to the
minimal solution.
In this paper we will study how to transform these difficult problems
into a zero-knowledge argument of knowledge identification scheme. In
other words: we will study how to prove that we have a solution of one
of these problems without revealing anything of the solution.

4 With Rubik’s cube 3 × 3 × 3

4.1 Introduction

We will first describe a zero-knowledge authentication scheme based on
Rubik’s classical cube 3 × 3 × 3. We do this in order to introduce the
main ideas with this relatively simple example. However with Rubik’s

cube 3× 3× 3 the complexity of problem 2 is much smaller than 280 and
therefore we cannot use it for cryptographic security (for cryptographic
applications we will use the Cube 5× 5× 5 as we will see below).
We have in fact about 43.2 × 1018 different positions for this Rubik’s
cube, so about 261 or 625. If we consider that half a turn counts as one
move, we know that God’s number (i.e. the minimal number of moves
necessary to unscramble any position of the Rubik’s cube) is 20 [15].
Nevertheless in our case we do not authorize un-clockwise quarter turns
and half turns. So it seems reasonable to choose for problem 2 the value
d = 24, and the security will be about 624/2 = 612 ≈ 230 computations.

4.2 Hiding the secret

First we have to hide the permutation we make to go from a position to
another, without hiding that we make one authorized permutation, i.e.
one element of F . An easy way to do this with the cube 3 × 3 × 3 is to
roll the cube like a dice (we always consider that the centers of the faces
do not move or do not exist).
Let H be the group of the orientation-preserving symmetry of the cube.
We have H = 〈h1, h2〉 where h1 is the cube rolling on its back , and h2

the cube laying on the table but turning as a whole one clockwise quarter
of a turn. To be more precise we have:

h1 = RL−1(2, 39, 42, 18)(7, 34, 47, 23)

h2 = UD−1(13, 37, 29, 21)(12, 36, 28, 20)

It is easy to check that |H| = 24, because for each face up, we have 4
choices for the face in front. Moreover we have UH = F .

Proposition 3 If f ∈R F and τ ∈R H, then fτ is a random variable
with a uniform law on F .

Proof. This is a direct consequence of Proposition 1.

Illustration. Let x0 ∈ GR = 〈F〉 be one position of the cube and x1 =
x0f , the following diagram is commutative (i.e. fτ = τfτ):

x0
f−−−−−→ x1

τ

y τ

y
x0τ

fτ−−−−−→ x1τ

Secondly, we want to hide each of the conjugate authorized moves, at each
step of the resolution. For this we use a mask, a random permutation of G
called σ0. If fi1 , fi2 , . . . fid are the secret moves, we hide their conjugate
moves this way (by defining σj for all j ∈ {1; 2; . . . ; d}): fi1τ = σ0σ

−1
1 ,

then fi2
τ = σ1σ

−1
2 , . . . , and fid

τ = σd−1σ
−1
d . So we have fi1 . . . fid =

σ0σd
−1.

4.3 ZK protocol

In this subsection,we will give the general protocol for any group G, any
set of generators F of a large subgroup GR of G, and we suppose that
this set has a repositioning group H ⊂ G. We will prove in the next
subsection that it is a zero knowledge argument of knowledge scheme.
We can also use this protocol for the puzzle called S41 described in
appendix C.
Public:

– A group G.
– A set F = {f1, . . . , fα} ⊂ G of generators of GR
– A repositioning group H ⊂ G such that f1

H = F .
– d ∈ N, d ≥ 3
– G′ subgroup of G generated by F and H. G′ = 〈F , H〉.
– K a set of keys, |K| ≥ 280.

Secret key: i1, i2, . . . , id ∈ {1, 2, . . . , α}.
Public key: x0 = (fi1fi2 . . . fid)−1

Scheme (one round):
Prover Verifier
Picks τ ∈R H, σ0 ∈R G′,
k∗, k0, k1, . . . , kd ∈R K
Computes
∀j ∈ {1, . . . , d},

σj = (fij
τ)−1σj−1

c0 = Comk∗(τ)
∀i ∈ {0, . . . d},

si = Comki(σi)
c0, s0, . . . , sd
−−−−−−−−−−−→

Picks q ∈R {0, . . . d}
q

←−−−−−−−−−−−

τ , σ0

Case q = 0 −−−−−−−−−−−→ Computes
k∗, k0, kd σd = τ−1x0τσ0

Checks
τ ∈ H, Comk∗(τ) = c0,
Comk0(σ0) = s0,
Comkd(σd) = sd
If all tests ok then accepts
else rejects.

fiq
τ , σq

Case q 6= 0 −−−−−−−−−−−→ Computes
kq−1, kq σq−1 = fiq

τσq
Checks
fiq

τ ∈ F ,
sq−1 = Comkq−1(σq−1)
sq = Comkq (σq)
If all tests ok then accepts
else rejects.

Remark. Since H is a small group, we can change a little the protocol by
not sending c0 in the first phase, and only sending σ0 in the first case of
the third phase. Then the Verifier will try all the possible values for τ .
So it is quite obvious that it is not the size of H that secures the scheme.
Illustration. If we define for all k ∈ {1; . . . ; d}, xk = xk−1fik , we have
the following commutative diagram:

x0
fi1−−−−−→ x1

fi2−−−−−→ . . . xd−1

fid−−−−−→ xd = id

τ

y τ

y τ

y τ

y
x0τ

fi1
τ

−−−−−→
σ0σ1−1

x1τ
fi2

τ

−−−−−→
σ1σ2−1

. . . xd−1τ
fid

τ

−−−−−−−→
σd−1σd

−1
τ

With q = 0, the Verifier will check that the exterior composition way is
correct:

x0 xd = id

τ

y τ−1

x
x0τ −−−−−→

σ0σd
−1

τ

With q 6= 0, the Verifier checks one of the meshes:

fiq−−−−−→

τ

y τ

y
fiq

τ

−−−−−−−→
σq−1σq−1

Here τ is not revealed, we just have a random element σq−1 of G and a
random element of F , so we give no information on the secret.

4.4 Proof of ZK protocol

Correctness. Obviously, a legitimate Prover will always be accepted.

Proof of zero knowledge with error knowledge d
d+1

. We

first suppose that a Prover can answer correctly for all possible values
of q (i.e. is accepted by the Verifier). Since the commitment scheme is
computationally binding, we can state that:

– σ0 revealed for q = 0 is the same as the one computed for q = 1.
– σi for i ∈ {1; . . . ; d − 1} revealed for q = i is the same as the one

computed for q = i+ 1.
– σd revealed for q = d is the same as the one computed for q = 0.

For all i ∈ {1; . . . ; d}, the Verifier has checked that σi−1σi
−1 ∈ F , so let

ui ∈ {1; . . . ;α} such that fui = σi−1σi
−1.

With q = 0, the Verifier established id = x0τσ0σd
−1τ−1, so

id = x0τ(σ0σ1
−1)(σ1σ2

−1) . . . (σd−1σd
−1)τ−1

= x0τfu1fu2 . . . fudτ
−1 = τfu1τ

−1τfu2τ
−1 . . . τfudτ

−1

= x0fu1

τ−1

fu2

τ−1

. . . fud
τ−1

Hence we have a solution of the initial problem.
Therefore, if we consider a Cheat Prover i.e. a person who does not have
a solution to the initial problem, there is at least one of the Verifier’s
request (one of the q value) that will lead to a rejection. So the probability
that the Cheat Prover can convince a Honest Verifier is less than d

d+1
.

Statistically zero knowledge. Firstly we show that for a legitimate
prover, each answer has a uniform probability over the corresponding set.
• q = 0.

The Prover gives (τ, σ0, k∗, k0, kd) ∈ H × G′ × K3 which are all
independent random values over the concerning set.

• 1 ≤ q ≤ d.
The Prover gives (fiq

τ , σq, kq−1, kq) ∈ F × G′ ×K2. Since we have
fi1 . . . fiq = τσ0σ

−1
q τ−1, if we define h = τ−1fiq

−1 . . . fi1
−1τ , then

we have σq = hσ0 with σ0 picked at random in G′, so σq is a random
permutation independent from fiq

τ . Moreover, since τ ∈R H, fiq
τ

is uniformly chosen in F (see section 4.2, or below Proposition 1
for the generalization). So we have again a uniform probability over
F ×G′ ×K2.

Secondly, we construct a black-box simulator which takes x0 without
knowing the secret, and interacts with a Cheating Verifier CV. We show
that the simulator can impersonate the honest prover with probability
1
d+1

. The simulator randomly chooses a value q∗ ∈R {0; 1; . . . ; d}, this is
a prediction what value CV will not choose. We consider two cases:

• q∗ = 0
The simulator picks τ ∈R H, f ′1, . . . , f

′
d ∈R F and σ0 ∈R G′. Then

it computes for all k ∈ {1; . . . ; d} σk = f ′k
−1
σk−1.

• 1 ≤ q∗ ≤ d
It picks f ′1, f

′
2, . . . , f

′
q∗−1, f

′
q∗+1, . . . f

′
d ∈R F . Then it picks τ ∈R H

and σ0 ∈R G′. It computes f ′q∗ ∈ G′ (not necessary in F) such that

x0f
′
1 . . . f

′
d = id, and for all k ∈ {1; . . . ; d} σk = f ′k

τ−1

σk−1

It is easy to check that, except for q = q∗, every request of CV will have
a satisfying answer. So the probability that it fails is 1

d+1
. Moreover,

when only the successful interactions are recorded, the communication
tape is indistinguishable from what would have been obtained from an
execution performed by the real Prover.

4.5 Number of rounds for the cube 3 × 3 × 3

We quit the general case to consider our classical cube 3 × 3 × 3. Here
we will discuss of the number of times (r) the prover will do the protocol
(one protocol is considered as one round), in order to prove with a good
probability that she knows the secret. If we set this probability to 1−2−m,

we must have
(

d
d+1

)r
≤ 2−m, so it gives r ≈ md ln(2). For example,

with m = 30 and d = 24, only 500 rounds are necessary. We simulate
this scheme with a 3GHz computer, and a non-optimized algorithm (we
used a rather slow hash function for the commitment), and it has token
less than 1 second to simulate 100 times all the protocol.

5 Rubik’s cube 5 × 5 × 5

For practical authentication we need a puzzle with at least 2160 different
states. The Rubik’s cube 4×4×4 has (only) about 2152 positions. Thus,
we choose the next cube, i.e. the cube 5 × 5 × 5 which has about 2247

different positions (computation with Sage).

5.1 Mathematical representation

We write numbers on each facet, except the centers. For the manip-
ulation of the cube, we consider only 12 basic permutations. We will
choose here the 6 clockwise quarter turns of the upper crown of each
face (U,D, F,B,R,L), and the 6 clockwise quarter turns of the first in-
termediary crown of each face (U1, D1, F1, B1, R1, L1). Nevertheless other
choices are possible. We have:

GR = 〈U,D, . . . , L, U1, D1, . . . , L1〉 ⊂ S144

5.2 Hiding the secret

Fig. 1. Twin cubes, move (R1, R)

Just rolling the cube is not enough to hide an authorized move. This will
only shuffle independently (U,D, F,B,R,L) and (U1, D1, F1, B1, R1, L1).
We need a new idea. A way to do this is to duplicate the cube, and so
we will consider the group GR ×GR. Then, each time we use R1 on the
first cube, we will use R on the second cube (see figure 1), each time we
use R on the first cube, we will use R1 on the second cube, each time we
use L1 on the first cube, we use L on the second cube and so on.
We will call e the exchange of the two cubes, e is an extra element that
exchanges the coordinates:

e2 = id and ∀(a, b) ∈ GR ×GR, e(a, b)e = (b, a).

To prove the existence of such an element, we can use an injective group
morphism from G2 to S288, because we can decide that the facets of the

second cube are numbered from 145 to 288.
Then e = (1,145)(2,146) . . . (144,188) satisfies the requested properties.
For convenience of notations we will still use the notation in G2.
We set F = {(U,U1), . . . , (L,L1), (U1, U), . . . , (L1, L)} and GR = 〈F 〉 ⊂
GR×GR. The size of GR is about the same as GR. A computation with
Sage gives |GR| ≈ 2300 and |GR| ≈ 2364. We will hide the move by rolling
in the same way the two cubes, and exchanging (or not) the two cubes.
So we set H = 〈(h1, h1), (h2, h2), e〉. This time our repositioning group
H has 48 elements: the 24 previous repositioning moves, and all these
elements combined with the exchange of the cube (before or after, it has
no importance).

5.3 ZK Protocol

The protocol in the previous section works for every set of generators
with a repositioning group. In this case, we manage to construct a repo-
sitioning group by considering the group G2 (or G3 for the cubes 6×6×6
and 7× 7× 7, Gn for the cubes (2n)3 and (2n+ 1)3). We will see in the
next section that we can construct in all the cases, a repositioning group
by considering the group Gα. For the cube 5 × 5 × 5, we manage to di-
minish the size of the group because the authorized moves already have
some symmetry (rolling the cube shuffles some of the moves).
Then we need to adapt our scheme to the new problem: we will only care
to rearrange the first cube, in other words, when we check for q = 0 the
external way, we just look at the first coordinate in the set Gn (n = 2 for
the cube 5 × 5 × 5). See appendix B for the details of the scheme. The
proof of the zero knowledge argument of knowledge is almost the same
as the previous one.

5.4 Choice of d and the number of rounds for the cube
5 × 5 × 5.

If we follow the generic attacks in Proposition 2, we see that we can
choose d = 42. We have in fact 1242 ≈ 2150 which is much smaller than
the cardinality of the total number of positions. Nevertheless most of the
times when we choose i1, i2 ..., id the solution is not unique because we
can invert the permutations that commute. Then we can impose for the
secret that two consecutive chosen permutations of F must be equal or
do not commute. Then there are only 12 × 9d−1 possible combinations.

With d = 48 we have 12× 947 ≈ 2152, and d× 9d/2 > 280.

The number of necessary rounds is 988 , since
(
47
48

)988 ≤ 2−30.

6 Generalization with any group

6.1 General method for any set of generators

Let G be a group, α ∈ N (α ≥ 2), F = {f1, . . . , fα} such that 〈F〉 = G.
We work with the group Gα and define for all i ∈ {1; . . . ;α}

f i = (fi, fi+1, . . . , fα, f1, . . . fi−1)

and we define an extra element h of Gα that verifies:

hα = id and ∀(a1, . . . aα) ∈ Gα, h−1(a1, . . . , aα)h = (a2, . . . , aα, a1)

Again, we can prove the existence of such an element thanks to an in-
jective group morphism from Gα to Sαn, constructed with an injective
morphism from G to Sn, because we know from the well-known theorem
of Cayley that every finite group can be considered as a subgroup of a
symmetric group [11]. Then h is defined in Sαn by:

∀i ∈ {1; . . . ;αn}, h(i) =

{
i+ n if i ≤ (α− 1)n
i− (α− 1)n if i > (α− 1)n

Then H = 〈h〉 is a repositioning group of F = {f1; . . . ;fα}.
We can use appendix B to construct our scheme.

6.2 ZK with finite factorization in symmetric groups

Here we consider the case where we do not fix the number of factors, we
just give an upper bound of it. This case may seem more difficult than the
previous ones, it is in fact a particular case of the previous subsection.
We just have to add f0 = Id to the set of authorized functions, and
fix the value d at the diameter of the group, i.e. the maximum distance
between two vertices of the Cayley graph of the group. Then we use
the same techniques as in previous subsection, it means that we work in
Gα+1 with some extra elements. We will give details of this technique in
an extended version of the paper.

7 Efficiency

We suppose we have a symmetric group G whose cardinal is superior to
2160 and with a system of generators F = {f1; f2; . . . ; fα} so that there

exists a permutation h of order α with fi = f1
hi−1

for all i ∈ {1; . . . ;α}.
We denote H = 〈h〉 and H is a repositioning group of F . The system
parameters can be built from only h and f1, so it can take only 320 bits,

but in this case we have to compute at each round f1
hj and it will cost

about d 3
2

ln2 αe products of permutations (22 if α = 9240).

The secret key is an element (i1, i2, . . . , id) of {1; . . . ;α}d, so we need
dd log2(α)e bits.
The public key is x0 = f−1

id
. . . f−1

i1
∈ G, it takes about 160 bits if the

cardinal of G is close to 2160.
In order to compare with existing schemes, we will compute these values
for the puzzle S41 (see appendix C). We mention in the following table
the two different ways to implement S41, the first one with all the group
H in memory, and the second one with only one generator of H and
one element of F . We will denote this last one by S41′. We can see in
the following table that in terms of performance, our scheme is not so
different from the other ones. Moreover, S41′ is the most compact of
all the schemes, in terms of system parameters. And in both cases, no
arithmetic operations are needed.

Table 1. Comparison of 3-pass schemes on 80-bit security against key-recovery attack
when the impersonation probability is less than 2−30

SD [17] CLE [18] PP [13] S41 S41′

round 52 52 73 260 260
system parameter (bit) 122,500 4,608 28,497 1,478,560 320

public key (bit) 350 288 245 165 165
secret key (bit) 700 192 177 165 165

communication (bit) 59,800 45,517 100,925 673,180 673,180
arithmetic op. (times/field) 2/S700 4/S24 2/S161,S177 0 0
permutations (times/size) 2/S700 4/S24 2/S161,S177 3/S41 23/S41 (***)

hash function (times) 4 4 8 14 (*) 14 (*)
2.08 (**) 2.08 (**)

best known recovery attack 287 284 > 274 282 282

(*) Prover (**) Verifier (***) mean value

8 Conclusion

In this paper, we have studied several authentication schemes built on
various factorization problems in non abelian groups. Firstly we proposed
zero-knowledge protocols based on different problems with the Rubik’s
cube and several other generalized cubes. Then we led the generalization
for any non abelian group.
The keystone to our constructions relies on the existence of a reposition-
ing group. Whereas the construction of such a group is quite natural for
the Rubik’s cube 3×3×3, the existence of the repositioning group needs
a special construction for generalized Rubik’s cubes. We also explained
how to proceed in the general case. Besides, we showed how to construct
a random puzzle over a small set that is suitable for the general scheme
and can be used for a security in 280.
Moreover, it is also possible to transform these authentication schemes
into signature schemes with the standard transformation used in the
“Fiat-Shamir” protocol with a hash function [3].
Our constructions are much more efficient than those obtained with
general process [5]. Other puzzles, not mentioned here, can be used in
the same way for authentication, but there exist puzzles based on some
PSpace complete problems or too dissymmetric puzzles that would be
worth having specific analysis.

References

1. Pierre Colmez. Le Rubik’s cube, groupe de poche. ENS Ulm, may
2010.

2. Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Anna Lubiw,
and Andrew Winslow. Algorithms for Solving Rubik’s Cubes. In
Camil Demetrescu and Magnús M. Halldórsson, editors, Algorithms
– ESA 2011, volume 6942 of Lecture Notes in Computer Science,
pages 689–700. Springer Berlin Heidelberg, 2011.

3. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to
identification and signature problems. In Advances in Cryptology –
Eurocrypt 1990, volume 473 of Lecture Notes in Computer Science,
pages 481–486. Springer-Verlag, 1990.

4. Michael R. Garey and David S. Johnson. Computers and Intractabil-
ity. A Guide to the Theory of NP-Completness. W.H Freeman and
Co, 2nd, 1991 edition, 1979.

5. Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield
nothing but their validity or all languages in NP have zero-knowledge
proof systems. J. ACM, 38:690–728, July 1991.

6. Oded Goldreich and Y. Oren. Definitions and properties of Zero-
knowledge proof systems. Journal of Cryptology, 7(1):1–32, 1994.

7. Shai Halevi and Silvio Micali. Practical and Provably-Secure Com-
mitment Schemes from Collision-Free Hashing . In Neal Koblitz,
editor, Advances in Cryptology – CRYPTO 1996, volume 1109 of
Lecture Notes in Computer Science, pages 201–215. Springer-Verlag,
1996.

8. David Joyner. Adventures with Group Theory: Rubik’s Cube, Mer-
lin’s Machine, and Other Mathematical Toys. The Johns Hopkins
University Press, 2nd edition, 2008.

9. Graham Kendall, Andrew J. Parkes, and Kristian Spoerer. A Survey
of NP-Complete Puzzles. ICGA Journal, 31(1):13–34, 2008.

10. Dexter Kozen. Lower bounds for natural proof systems. In FOCS,
pages 254–266, 1977.

11. Serge Lang. Algebra Revised 3rd Edition. 2002.
12. Christophe Petit and Jean-Jacques Quisquater. Rubik’s for cryptog-

raphers. IACR Cryptology ePrint Archive, 2011:638, 2011.
13. David Poincheval. A New Identification Scheme based on the Percep-

trons Problem. In Alfredo de Santis, editor, Advances in Cryptology
– EUROCRYPT 1995, volume 950 of Lecture Notes in Computer
Science, pages 319–328. Springer-Verlag, 1995.

14. L. Pyber and E. Szabó. Growth in finite simple groups of Lie type
of bounded rank. ArXiv e-prints, May 2010.

15. Tomas Rokicki, Herbert Kociemba, Morley Davidson, and John De-
thrige. God’s number is 20. http://cube20.org.

16. W. A. Stein et al. Sage Mathematics Software (Version
4.7-OSX-32bit-10.5). The Sage Development Team, 2011.
http://www.sagemath.org.

17. Jacques Stern. A New Identification Scheme based on Syndrome
Decoding. In Douglas R. Stinson, editor, Advances in Cryptology –
CRYPTO 1993, volume 773 of Lecture Notes in Computer Science,
pages 13–21. Springer, 1993.

18. Jacques Stern. Designing Identification Schemes with Keys of
Short Size. In Yvo G. Desmedt, editor, Advances in Cryptology –
CRYPTO 1994, volume 839 of Lecture Notes in Computer Science,
pages 164–173. Springer, 1994.

A Possible connections between NP Complete,
NP Space and Rubik Problems

In section 3 we have seen several problems based on the Rubik’s cube
or on generalized Rubik’s cubes. When one of the parameters of these
puzzles (for example the size n of the cube) becomes large, we wonder
how will grow the complexity, asymptotically speaking. We notice that
we do not know if some of these problems are NP-complete yet (cf [9]
p. 27). Moreover, it is plausible that they are not NP-complete because
they have a power of description too limited to describe all the problems
of the NP class.
Nevertheless, as we will explain further, some of NP-complete problems
have a real similarity with the Rubik’s cubes puzzles. So we can consider
that these problems, used in this article for authentication, are part of
a neighboring class, or a larger class, which is proved NP-complete or
NP-space. This is not a proof of the difficulty of Rubik’s cube related
problems, but it is an indirect argument suggesting it could be true.
Example 1 From [4] p. 280 and [10] we know that the problem “Finite
Function Generation” is P-space complete.
Finite Function Generation
INSTANCE: Finite set A, a collection F of functions f : A → A and a
specified function h : A→ A.
QUESTION: Can h be generated from the functions in F by composi-
tion ?
Remark. We can notice that here the number of composition functions to
be found is not considered, unlike for the Rubik’s cube problems where
this value d seems to be critical for the complexity.
Example 2 From [4] p. 213, we know that the problem “Longest path”
is NP complete.
LONGEST PATH
INSTANCE: Graph G = (V,E), length l(e) ∈ Z+ for each e ∈ E, positive
integer K, specified vertices s, t ∈ V
QUESTION: Is there a simple path in G from s to t of length K or more,
i.e. whose edge lengths sum to at least K ?
Remark. This problem remains NP complete if l(e) = 1 for all e ∈ E.
Therefore this problem has some similarities with our Rubik problems
for going from one position to another. However, as noticed in [4] p. 79
this problem becomes polynomial when we change “of length K or more”
by “of length K or less”. Nevertheless if we model our graph G such that
each vertex is a position of a Rubik’s cube n × n × n, the number of
vertices (i.e. possible Cubes) will grow exponentially in n.

B Protocol when the set of generators has no
obvious repositioning group

Public:

– A group Gn.
– A set F = {f1, . . . , fα} of generators of GR ⊂ G

– A set F = {f1, . . . ,fα} ⊂ Gn with f i = (f i1 = fi, f
i
2, . . . f

i
n) for all

i ∈ {1, . . . α}.
– A repositioning group H such that f1H = F .
– d ∈ N, d ≥ 3
– A group GR generated by F and H. GR = 〈F ,H〉.
– K a set of keys, |K| ≥ 280.

Secret key: i1, i2, . . . , id ∈ {1, 2, . . . , α}.
Public key: x0 = (fi1fi2 . . . fid)−1 (or X0 = (x0, id, . . . , id))
Scheme (one round):
Prover Verifier
Picks
τ ∈R H, σ0 ∈R GR,
k∗, k0, k1, . . . , kd ∈R K
Computes
∀j ∈ {1, . . . , d},

σj = (f ij
τ

)−1σj−1

c0 = Comk∗(τ)
∀i ∈ {0, . . . , d},

si = Comki(σi)
c0, s0, . . . , sd
−−−−−−−−−−−→

Picks q ∈R {0, . . . d}
q

←−−−−−−−−−−−

τ , σ0, σd
Case q = 0 −−−−−−−−−−−→ Computes

k∗, k0, kd Xd = X0τσ0σ
−1
d τ−1

Checks

Xd
1 = id

τ ∈H, Comk∗(τ) = c0,
Comk0(σ0) = s0,
Comkd(σd) = sd
If all tests ok then accepts
else rejects.

fiq
τ , σq

Case q 6= 0 −−−−−−−−−−−→ Computes
kq−1, kq σq−1 = fiq

τσq
Checks
fiq

τ ∈ F ,
sq−1 = Comkq−1(σq−1)
sq = Comkq (σq)
If all tests ok then accepts
else rejects.

C A new puzzle called S41

We will present here a new puzzle whose performances seem interesting.
We call it S41 because we work in the group G = S41, which is is the

first symmetric group whose cardinal is superior to 2160. We have in fact
|G| ≈ 2165.
With SAGE, we take two random elements h and f1 in S41 until they
generate all the group. In the following chart, we can see horizontally the
order of f

〈h〉
1 (α), and vertically the number of solutions for 1000 tries.

Then, we choose the instance with the biggest α, in order to have a small-
est value for d, and in consequence, the smallest value for the number of
rounds of the scheme. Here is the instance:

h = (1, 14, 39, 19, 31, 18, 37)(3, 36, 4, 23, 20, 34, 16, 25, 17, 26, 35)

(5, 13, 30, 33)(6, 7, 10)(8, 24, 15, 38, 41, 27, 11, 9)

(12, 40, 32, 21, 28)(22, 29),

and

f1 = (1, 11, 31, 6, 17, 34, 25, 24, 22, 12, 4, 28, 3, 14, 5, 27, 32, 13, 26, 8, 23, 2,

20, 41, 19, 10, 40, 15, 38, 16, 37, 39, 35, 21, 18)(7, 29, 36)(9, 30).

We set H = 〈h〉 and F = f1
H . With SAGE we have checked that F is

a set of generators of G and |H| = |F| = α = 9240. We can fix d = 12
for a security in 82 bits. And for an impersonation probability less than
2−30 only r = 260 rounds are needed.

